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Preface and Acknowledgments

This book is a labor of love by the three of us, a love of the subject of coherent
states and its applications in many areas of physics for nearly four decades. It is also
unusual that the three of us belong to three intellectual generations!

The genesis of this book’s idea came about when Wei-Min Zhang (WMZ) began
his physics graduate studies with Da Hsuan Feng (DHF) at Drexel University in
the mid-1980s. It was at a time when the research interests of DHF were in two
major directions: the interacting Boson model (IBM) in nuclear structure physics
and quantum optics.

The former was pioneered by Franco Iachello of Yale University and Akito
Arima of the University of Tokyo. A fundamental aspect of the IBM is its generous
deployment of Lie group and Lie algebra to classify the various collective motions
of nuclei.

For the latter, DHF who was trained as a nuclear theorist was profoundly
influenced by his colleague Professor Lorenzo Narducci at the Department of
Physics, Drexel University, who was a leading theorist in the field of quantum optics.
In our many initial scientific conversations to eventual intense collaborations, DHF
learned from Narducci that in quantum optics, the coherent states that was proposed
by Roy Glauber of Harvard University, who is also the first person to coin the term
“Coherent States,” is literally its foundation. From learning more about the technical
details of coherent states, DHF came to the realization that Lie group and Lie algebra
also play the underlying mathematical foundation of the field of quantum optics.

It was the juxtaposition of the IBM and quantum optics that allowed WMZ and
DHF to collaborate on exploring the general mathematical structures of coherent
states and with such a study to explore its many possible physics applications. In
fact, in collaboration with another colleague at Drexel University, Robert Gilmore,
who had made pioneering studies of the subject of coherent states, we were able to
publish an extensive review article (Rev. Mod. Phys. 62, 867—Published 1 October
1990) with the title “Coherent states: Theory and some applications.” The content
of this review was based on the doctoral thesis of WMZ.

With the increasing importance of the utilization of coherent states in many
areas of science, and soon after the review article was published, WMZ and DHF
germinated the idea of expanding the review article into a book. In fact, we were
even encouraged by some of the leading scientists to do so. Unfortunately, as it was
often the case, while our deep interest in coherent states remains, the career paths
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of WMZ and DHF diverged into different areas and it became non-conducive to the
necessary concentration that was required to write such a book.

Fast forward to about 6 years ago, when DHF became a senior administrator at
the University of Macau. At that time, CFK, who was formally an undergraduate
advisee of WMZ at the National Cheng Kung University in Taiwan, was a doctoral
student in physics at the Chinese University of Hong Kong. Quite by serendipity,
being a “native” of Macau, on weekends, CFK would travel back to Macau from
Hong Kong to visit his family. DHF thus exploited this opportunity by inviting
WMZ to visit Macau so we could discuss physics together.

As things progressed, it was not surprising in hindsight that our discussions
quickly centered on the dormant interest of WMZ and DHF to write a book about
coherent states and applications. It was entirely obvious that CFK by then was
already a highly sophisticated and enthusiastic theoretical physicist, and that the
idea of us collaborating together to write a book on such a profoundly important
subject, however arduous it would be, appealed to his intellectual taste. That was
how our collaboration began.

One of us (DHF) was extremely honored to have met Roy Glauber only once, and
it was at a conference on quantum optics which was held in 1995 at Jilin University,
China. During our extensive discussions on many areas of physics at the conference,
especially about his pioneering work on coherent states and some areas that are
not in physics, DHF already felt so much wiser having had that conversation with
Glauber (Fig. 1).

It is worth underscoring that when DHF met him, which was way before he
became a Nobel laureate (which he received in 2005), DHF remembers distinctly

Fig. 1 In the middle of the front row of the photo is Roy Glauber. DHF had a green shirt on
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telling him that he definitely should be bestowed the Nobel prize for his work on
coherent states. DHF remembers the only answer he got from him was a faint smile!

Furthermore, for the more than three decades of our love of coherent states,
we had benefitted enormously from having in-depth discussions, in person and/or
in communication with many experts in this vast field. Discussions with pioneers
such as Lorenzo Narducci, John Klauder, Robert Gilmore, and Elliott Lieb have
certainly greatly shaped our understanding of coherent states and its applications in
immeasurable ways, for which we are forever indebted.

We are also deeply grateful to receive the opportunities to have many decades of
scientific interaction with one of the founders of the interacting Boson model (IBM),
Franco Iachello. His influence on us with his deep knowledge about Lie algebra and
Lie group is truly innumerable.

Last but certainly not least, we must thank Dr. Wei Ge, the Vice Rector of
Research at the University of Macau. Without his sustainable support of our
collaboration, completing this book could have been impossible.

For the readers who are interested in getting hints or solutions (we suggest hints)
to the exercises, please contact any one of the three authors (CFK’s email address:
dubussygauss@gmail.com).

Buffalo, NY, USA Chon-Fai Kam
Tainan, Taiwan Wei-Min Zhang
Philadelphia, PA, USA Da Hsuan Feng
August 15, 2022
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1Introduction

Over the past half-century, the developments of coherent states have been breath-
taking, and their applications have been explored in a wide range of fields. Yet, it
should be underscored that the idea of constructing coherent states for a quantum
system can be dated back to the genesis of quantum theory in the 1920s. In fact,
Erwin Schrödinger himself was the first person to propose the existence of what is
now called “coherent states.” By 1926, in the same year that Schrödinger formulated
his wave equation that accurately calculated the energy levels of electrons in atoms,
he published a paper which made the attempt to connect coherent states with the
classical mechanics of a quantum harmonic oscillator [1]. In this regard, one could
credit Schrödinger with the invention of coherent states immediately after the birth
of quantum mechanics.

However, research on coherent states remained dormant in the years between
1926 and 1963. It was not until three and a half decades after Schrödinger’s
pioneering work that the first important and specific application of coherent states
in quantum optics was made by Roy J. Glauber [2–4] and E. C. George Sudarshan
[5]. In his two papers, in which the term “coherent states” was first coined, Glauber
constructed the eigenstates of the annihilation operator of an electromagnetic field
in order to study the electromagnetic correlation functions, which leads to a more
comprehensive understanding of optical coherence. Glauber thereby won the 2005
Nobel Prize in Physics for his development of the theory of quantum optics. At the
same time as Glauber and Sudarshan, John R. Klauder also developed a method to
generate a set of continuous states in which the basic ideas of coherent states for
arbitrary Lie groups are introduced [6,7]. Since then, the field of coherent states has
literally become an integral part of modern physics.

Roughly a decade later, by 1972, after the pioneering works of Glauber,
Sudarshan, and Klauder, the explicit construction of coherent states for arbitrary
Lie groups was successfully demonstrated by Askold M. Perelomov [8] and Robert
Gilmore [9,10]. It should also be underscored that around the same period, in order
to study quantization on arbitrary Kähler manifolds, Felix A. Berezin proposed the

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-F. Kam et al., Coherent States, Lecture Notes in Physics 1011,
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2 1 Introduction

usage of a family of over-complete vectors which are mathematically equivalent
to the Perelomov-Gilmore coherent states [11–14]. The central idea of Perelomov
and Gilmore’s constructions was to construct coherent states directly from the
dynamical symmetry group for each physical system. For example, a quantized
single-mode electromagnetic field possess the Heisenberg-Weyl group .H4 which
contains the creation, annihilation, identity, and number operators as generators
[15]. Hence, one may construct the Glauber coherent states as an element in the
coset space .H4/U(1)⊗U(1) by applying the displacement operator on the vacuum
state [16, 17]. From this perspective, as most physical systems possess dynamical
symmetries beyond .H4, the concept of coherent states should not merely be
restricted to quantum harmonic oscillator. Indeed, one should be able to generalize
it to a broad range of physical systems.

A successful application of the generalized coherent states was in path integrals.
As is inherently the main reason, the Feynman original path integral [18,19] required
a phase-space structure. As such, it certainly hinders its application in spin systems
which do not possess a simple phase-space structure [20]. Also, as a key ingredient
of the standard path integral, the resolution of identity which is expressed in terms
of the coordinate or momentum states does not directly apply to spin systems. Such
difficulties were elegantly resolved through the usage of coherent states. As the
coherent states always possess a resolution of identity and a phase-space structure
in the geometrical coset space, the coherent state formalism of the path integral can
be applied to all physical systems in principle in the sense that the Hilbert space
of any quantum mechanical system is given by a unitary representation space of
some Lie groups. In other words, one can always find a continuous representation
for arbitrary quantum system in terms of the coherent states of the associate Lie
group. The coherent state formalism of path integrals expressed in terms of arbitrary
continuous representations was first recognized by Klauder in 1960 [21, 22] and
was later applied to many-body systems [23–30], single-molecule magnet [31, 32],
quantum gravity [33–35], and quantum entanglement [36, 37].

Another successful application of the generalized coherent states was in the
coherent state representation of thermodynamics. In 1973, Elliott H. Lieb derived
an ingenious thermodynamics inequality of the partition function for quantum spin
systems using atomic coherent states [38]. Prior to this, in 1972, Felix A. Berezin
derived the same inequality through the usage of the covariant and contravariant
symbols related to an over-complete family of coherent states [39]. The Lieb-
Berezin inequality gives both the upper and lower bounds of the quantum free
energy. Using this inequality, one may readily construct approximation descriptions
of a quantum statistics in terms of the coherent state representation. In particular,
in the zero-temperature limit, the free energy can be identified as the ground state
energy. Hence, the Lieb-Berezin inequality can be used to construct the upper and
lower bounds of the ground state energy in the zero-temperature limit, where the
ground state energies are determined by minimizing the Q and P representations of
the Hamiltonian, respectively. Having such a theoretical foundation, the coherent
approach to the approximation of ground state energies was among the earliest
studies of quantum phase transition [40].
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In the post 1980s era, a new branch of physics known as quantum compu-
tation emerged. It begins with Richard Feynman’s realization that sufficiently
well-controlled quantum mechanical systems can be used to simulating quantum
dynamics in a more efficient way. One key concept in quantum computation is
entanglement, which is a unique resource in quantum computation processing. The
idea of entanglement was implicitly discussed in Schrödinger’s ingenious 1935
seminal paper, in which he proposed that a cat can be simultaneously both alive
and dead as a result of a random atomic event such as atomic decay that may or
may not occur. Interestingly, Schrödinger’s hypothetical cat becomes real when a
mesoscopic cat-like states can be prepared through a superposition of coherent states
of light. As such, one may even use Schrödinger’s cats which composed of entangled
coherent states to perform quantum information task. Experimental generating and
measuring Schrödinger’s cat states and its decoherence evolution is one of the major
contributions archived by Serge Haroche and David J. Wineland for winning the
2012 Nobel Prize in Physics.

At the end, readers may find that through the coherent states theory of quantum
mechanics, a solution to the long-standing problem about the quantum-classical
correspondence, namely, to drive the classical and statistical mechanics solely from
the quantum principles, has been presented unambiguously in this book. Simply
speaking, the Glauber’s coherent states make the direct connection of classical
electric field with quantum state, see Eq. (2.29) of Chap. 1. On the other hand, the
path integral formulation given in Chap. 4 makes a clear connection of quantum
mechanics with classical mechanics through Feynman’s path integrals, where the
Lagrangian formulation of classical mechanics can be obtained from the stationary
paths of quantum evolution. The coherent state path integrals generalize the phase
space structure of classical mechanics to arbitrary quantum systems. Last but
not least, the solution of open quantum system by completely integrating out
the environmental degrees of freedom, i.e., Eq. 12.48 in Chap. 12, results in the
reduced density matrix of the system becoming the standard Gibbs state. From
which, conventional statistical mechanics and thermodynamics are recovered from
quantum mechanics.



2Coherent States of Harmonic Oscillator

2.1 Schrödinger’s Wave Packet

The coherent states [1, 17, 41] are built on the foundation of the simplest object in
quantum mechanics, the harmonic oscillator. As such, it is not surprising that it has
been invented many times and for different reasons and perspectives [1, 21, 42–
46]. In a series of papers published in 1926 [47], Erwin Schrödinger built the
wave formalism of quantum mechanics. Schrödinger is unquestionably one of the
founders of quantum mechanics, a body of knowledge that not only reinvented
physics but redefined humanity’s existence. For example, he was the one who
proposed the seemingly illogical gedanken experiment of a “live” and “death” cat to
illustrate a fundamental quantum principle, which is also one of the central themes
in today’s research in quantum information [48, 49]. As such, Schrödinger must
have intuitively recognized that there is a fundamentally irreconcilable discrepancy
between quantum waves and classical trajectories, a discrepancy which, remarkably
after more than 90 years since quantum mechanics was fully established in the 1926
Solvay conference, remains today a challenge to our basic understanding of our
physical environment.

Throughout his scientific career, one of the central problems Schrödinger
attempted to answer was how to reproduce classical trajectories from quantum
wave functions. In his seminal paper titled “The Continuous Transition From
Micro- to Macro-Mechanics” [1], Schrödinger demonstrated quite stunningly that
the discrepancy between the quantum and classical mechanics, while not entirely
resolved, can be partially reconciled. This remarkable conclusion of Schrödinger is
based on a demonstration that a particular wave packet of proper vibrations with
large quantum number can completely represent a particle that follows precisely the
classical mechanical path. With this, Schrödinger’s wave packet, built entirely on
the wave functions of the harmonic oscillator, was how the appearance of coherent
states first appeared in the scientific literature.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
C.-F. Kam et al., Coherent States, Lecture Notes in Physics 1011,
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6 2 Coherent States of Harmonic Oscillator

Since the work of Schrödinger is so fundamental to the discussion of coherent
states, we shall present in the following a detail discussion of how Schrödinger
constructed such wave packets.

It is of course well known now that the harmonic oscillator Hamiltonian is

.Ĥ = p̂2

2m
+ 1

2
mω2

0q
2, p̂ = −ih̄

∂

∂q
, (2.1)

where m is the oscillator mass, .ω0 is the oscillation angular frequency of the
oscillation, and .h̄ is the Planck constant. The wave packet is determined by the
Schrödinger equation .ih̄∂tψ = Ĥψ , where .ψ is the wave function, which is the
superposition of the proper vibrations

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ψ(q, t) =
∞∑

n=0

cnψn(q, t),

ψn(q, t) = φn(q)e
− i

h̄
Ent

.

(2.2)

Utilizing the length in units of .
√

h̄/mω0 and introduce a dimensionless variable
.x = q

√
mω0/h̄, the proper vibrations can be defined by the Hermite polynomials

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

φn(x) = 1
√

2nn!√π
e− 1

2 x2
Hn(x),

En =
(

n + 1

2

)

h̄ω0,

(2.3)

where n is a positive integer, .φn(x) is a set of complete orthonormal functions
satisfying

.

∫ ∞

−∞
φ∗

m(x)φn(x)dx = δmn, (2.4)

and .Hn(x) are the Hermite polynomials defined by the generating function

.e−s2+2sx =
∞∑

n=0

Hn(x)

n! sn. (2.5)

With the above, it immediately yields that the n-th Hermite polynomial is .(−1)nex2

times the n-th derivative of the function .e−x2

.Hn(x) = (−1)nex2 dn

dxn
e−x2

. (2.6)
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For a given real number A, a harmonic oscillator wave packet can be defined as
the superposition of the normalized proper vibrations with coefficients .An/

√
2nn!

(Fig. 2.1)

.ψ(x, t) =
∞∑

n=0

An

√
2nn!ψn(x, t) = 1

π1/4 e− i
2 ω0t e− 1

2 x2
∞∑

n=0

Hn(x)

n!
(

A

2
e−iω0t

)n

.

Using Eq. (2.5), the wave packet can be brought into a closed form

.ψ(x, t) = 1

π1/4
exp

(

− i

2
ω0t − A2

4
e−2iω0t + Ae−iω0t x − x2

2

)

. (2.7)

With additional derivation, we can obtain the final result

.ψ(x, t) = 1

π1/4 exp

[
A2

4
− 1

2
(x − A cos ω0t)

2
]

e−i[ 1
2 ω0t+A sin ω0t (x− A

2 cos ω0t)].
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Fig. 2.1 Schrödinger’s wave packet .ψ(x, t), Eq. (2.8), expressed as a function of x with .A = 8
and .ω0t = 1, will contain a time-dependent phase factor and a Gaussian envelope. In the profile of
the Gaussian envelope, the phase factor varies rapidly with x and ploughs through many deep and
narrow furrows
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It is noted that when .A = 0, the wave packet becomes .ψ = π−1/4e−x2−iω0t/2,
which is the wave function of the ground state of the oscillator. The requirement
that the result of integrating the probability over the whole space to be equal to
unity yields a normalized wave packet

.ψ(x, t) = e−A2/4
∞∑

n=0

An

√
2nn!ψn(x, t) (2.8)

= 1

π1/4 exp

[

−1

2
(x − A cos ω0t)

2
]

e−i[ 1
2 ω0t+(x−A/2 cos ω0t)A sin ω0t].

The above gives the earliest version of coherent states. It contains two different
parts: a time-dependent phase factor and a Gaussian envelope. At any given instant
of time, the Gaussian function has a peak at .x = A cos ω0t . It has significant values
only in the region of unity on both sides of the peak and diminishes rapidly beyond
of this region. By confining our consideration in a restricted region, it shows that the
wave packet can execute a periodic motion, which is entirely similar to a pendulum
in classical mechanics. The width of the Gaussian envelope has the order of unity,
which is much smaller than A when .A � 1; the amplitude of oscillation of x is A

and hence of q is

.a = A

√
h̄

mω
. (2.9)

The mean energy of the oscillator in this wave packet is

.Ē = a2

2
mω2

0 + 1

2
h̄ω0 = A2 + 1

2
h̄ω0 =

(

n̄ + 1

2

)

h̄ω0, (2.10)

which yields .n̄ = A2/2; the average number of quanta in the coherent states is half
of .A2. As a result, for a sufficiently large quantum number, the width of the wave
packet can be neglected. In Eq. (2.8), if we denote the mean values of the coordinate
and the momentum as .x̄ = A cos ω0t and .p̄ = −h̄A sin ω0t , the coherent states can
be expressed as

.ψ(x, t) = 1

π1/4 e− 1
2 (x−x̄)2

exp

[

− iω0t

2
+ ip̄x

h̄
− ip̄x̄

2h̄

]

. (2.11)

These results clearly manifest that the uncertainty of the coordinate in the wave
packet .�x is time-independently given by .1/

√
2. Thus, this gives the profound

result that the wave packet shall always remain compact, i.e., will not diffuse in
time. Furthermore, the uncertainty of the momentum in the coherent states .�p is
always given by .h̄/

√
2, which immediately yields .�x�p = h̄/2. The fact that the

wave packet minimizes the uncertainty relation shows that it de facto is a classical
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particle located at the peak of the wave packet, and is performing a periodic motion
with the amplitude A and the angular frequency .ω0.

The above result for the harmonic oscillator is absolutely “spectacular,” namely,
the complete agreement between classical and quantum description of the harmonic
oscillator. Unfortunately, it simply cannot be generalized. Indeed, in contrast, one
can demonstrate that a wave packet for a free particle shall always diffuse. Such a
wave packet is the superposition of a series of monochromatic plane waves, which
can be written as

.ψ(x, t) =
∫ ∞

−∞
g(k)ei(kx−ωkt)dk. (2.12)

where .ωk is the angular frequency of the plane wave with the propagation constant
k. For a free particle, the dispersion relation is .ωk = h̄k2/2m. Thus, if the wave
packet at .t = 0 is described by a Gaussian function .ψ(x, 0) = π−1/4e−x2/2eikx , the
wave packet at time t can be expressed as

.ψ(x, t) =
∫ ∞

−∞
g(k′) exp

[

i

(

k′x − h̄k′2

2m
t

)]

dk′, (2.13)

where the amplitude .g(k′) has the form

.g(k′) = π−1/4

√
2π

exp

[

−1

2

(
k′ − k

)2
]

. (2.14)

The amplitude .g(k′) has a peak at .k′ = k and has significant values only in the
region of unity on both sides of the peak. One can easily demonstrate that the wave
packet at time t can be brought into a closed form

.ψ(x, t) = π−1/4

√
1 + ih̄t/m

exp

[−x2 + 2ik(x − h̄kt/2m)

2(1 + ih̄t/m)

]

. (2.15)

Hence, at all times, the wave packet remains Gaussian, and the Gaussian envelope
and the phase factor are given by

.

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ψ(x, t) = π−1/4

(

1 + h̄2t2

m2

)− 1
4

exp

⎧
⎨

⎩
−1

2

(

1 + h̄2t2

m2

)−1 [

x − h̄k

m
t

]2
⎫
⎬

⎭
eiφ,

φ = −1

2
arctan

(
h̄t

m

)

+
(

1 + h̄2t2

m2

)−1 [

k

(

x − h̄k

2m
t

)

+ h̄x2

2m
t

]

.

From the above, one sees that the Gaussian function peaks at .x̄ = h̄kt/m and the
wave packet always moves with a constant velocity .h̄k/m. In other words, the center
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of the wave packet can be identified as a free particle in classical mechanics. How-

ever, as the width of the Gaussian function increases according to .

√

1 + h̄2t2/m2

and the height of the peak diminishes according to .(1 + h̄2t2/m2)−1/4, the wave
packet will gradually spread out. As time progresses, the wave packet will cease to
be a particle.

2.2 Glauber’s Coherent States

In the last section, we have discussed in detail as to how to construct the wave
packet from the quantum harmonic oscillator eigenstates. In view of the fact that
there exists similarity between the harmonic oscillator and the modal amplitude of
the electromagnetic field, in principle such a wave packet should also be applicable
to quantum optics. Yet, between 1920s and 1960s, the results of Schrödinger’s wave
packet remained at best a historical anecdote in the scientific literature. In fact, the
term “coherent states” was first deployed in 1963 by Roy J. Glauber in his seminal
paper on the quantum theory of optical coherence [3], almost 40 years later. At
roughly the same time, E. C. G. Sudarshan independently discovered the coherent
states and deployed them to construct his diagonal coherent state representation of
quantum operators [5].

Reflecting on Schrödinger’s ideas on the harmonic oscillator nonspreading wave
packet, Glauber established the mathematical foundations of quantum optics by
leveraging coherent states as a set of basic states in the Hilbert space. In his seminal
paper titled “Coherent and Incoherent States of the Radiation Field” published in
1963 [4], Glauber discussed in terms of the coherent states the correlation and
coherence properties of the optical field. Glauber’s quantum theory of light was soon
demonstrated to be the explanation of the experimental results regarding correlation
effects and quantitatively the distribution of photon numbers. In 2005, for his
coherent states work, Glauber received the Nobel Prize in Physics where the prize
motivation is “for his contribution to quantum theory of optical coherence.”

In the following, we shall discuss in detail Glauber’s coherent states. Before
this, we first discuss some necessary background materials of quantization of a free
electromagnetic field. In a region without any sources, it is well known that the
classical electromagnetic field satisfies the Maxwell equations

.∇ · E = 0,∇ × E = −1

c

∂B
∂t

, (2.16)

∇ · B = 0,∇ × B = 1

c

∂E
∂t

,

where one can derive the electric and magnetic field, .E(r, t) and .B(r, t), from the
vector potential .A(r, t) via the relations

.E = −1

c

∂A
∂t

and B = ∇ × A. (2.17)
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For our present purpose, we shall regard the electromagnetic field as being confined
within a spatial volume of finite size and satisfying certain boundary conditions at
the edge. By imposing these conditions, one can expand the vector potential by a set
of discrete mode functions labeled by a number k, also known as the mode index

.A(r, t) = c
∑

k

√
h̄

2ωk

(
akuk(r)e−iωkt + a

†
ku

∗
k(r)e

iωkt
)

. (2.18)

where .ak and .a
†
k are a pair of complex mode amplitudes of the field and .uk is the

vector mode function that corresponds to the frequency .ωk , satisfying the wave
equation

.

(

∇2 + ω2
k

c2

)

uk = 0, (2.19)

with the transversality condition .∇ · uk = 0. All the mode functions should be
normalized and orthogonal to each other

.

∫

u∗
k(r) · uk′(r)dr = δkk′ . (2.20)

One can show that the energy function of the electromagnetic field takes on the form

.H = 1

2

∑

k

h̄ωk(a
†
kak + aka

†
k ). (2.21)

The above can be interpreted as the energy of an assembly of independent linear
harmonic oscillators with vibrational frequencies .ωk . The analogy between the
mode amplitudes and the harmonic oscillators suggests the following canonical
commutation relations

.[ak, ak′ ] = [a†
k , a

†
k′ ] = 0, [ak, a

†
k′ ] = δkk′ . (2.22)

The states of the quantized electromagnetic field are vectors in the product space of
the Hilbert space for all of the modes, and the number of photons in each mode
can vary from zero to infinity. A set of basic states .{|nk〉}, which is labeled by
the number of photons for each discrete mode, can be obtained by multiplying the
integral powers of the operator .a

†
k to the ground state .|0k〉

.|nk〉 = (a
†
k )

nk

√
nk! |0k〉, (2.23)
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where .|0k〉 is the ground state defined by .ak|0k〉 = 0 and the basis states .|nk〉 are
normalized and orthogonal in the usual sense, .〈nk|nk′ 〉 = δkk′ . The operators .ak and
.a

†
k acting on the basis states will lower or raise the number of photons by one, thus

yielding

.ak|nk〉 = √
nk|nk − 1〉, (2.24)

a
†
k |nk〉 = √

nk + 1|nk + 1〉,
a

†
kak|nk〉 = nk|nk〉.

Hence, .ak and .a
†
k can be interpreted as operators which annihilate or create a photon

in the kth mode, respectively.
For quantum optics, the above background materials are sufficient to introduce

the coherent states. In the quantum theory of light, what distinguishes a quantum
electromagnetic field from its classical counterpart is the existence of the vacuum
fluctuations. For example, the expectation value of the square of the electric field
operator, .〈vac|E2(r, t)|vac〉, is larger than zero in the vacuum state and is therefore
irrelevant for the detection of photons. The measurement of the optical field actually
involves only photon annihilation processes, and the relevant quantity is the positive
frequency part of the electric field operator, .E(+)(r, t), defined by .E(+)(r, t)|vac〉 =
0. For an ideal photodetector placed at point .r and measured at time t , the outcome
of the measurement is

.〈vac||E(+)(r, t)|2|vac〉 = 〈vac|E(−)(r, t)E(+)(r, t)|vac〉,

which vanishes identically in the vacuum state. Here, .E(−)(r, t) is the negative
frequency part of the electric field operator, .E(−)(r, t) = {E(+)(r, t)}†. In other
words, no photon is detected in the vacuum state by an ideal photodetector. For a
general light beam, the counting rate of the ideal photodetector will be proportional
to .G(1)(rt, rt), where .G(1)(rt, r′t ′) is the quantum mechanical correlation function
defined by

.G(1)(rt, r′t ′) = Tr
{
ρE(−)(r, t)E(+)(r′, t ′)

}
. (2.25)

Here .ρ is the density operator specifying the state of the field. It can be shown that
the quantum mechanical correlation function will obey

.|G(1)(rt, r′t ′)|2 ≤ G(1)(rt, rt)G(1)(r′t ′, r′t ′). (2.26)

The above equality sign is satisfied only if one can factorize the correlation function
into the form .G(1)(rt, r′t ′) = E∗(r, t)E(r′, t ′). In this case, the complex function
.E(r, t) is nearly completely determined by the coherent properties of the optical
field to within a phase factor. According to Eqs. (2.17) and (2.18), one can express
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the positive frequency part of the electric field operator as

.E(+)(r, t) = i
∑

k

√
h̄ωk

2
akuk(r)e−iωkt . (2.27)

By introducing the coherent states of the individual modes as the eigenstates of the
annihilation operators via .ak|αk〉 = αk|αk〉, it yields

.E(r, t) = i
∑

k

√
h̄ωk

2
αkuk(r)e−iωkt , (2.28)

where .�k|αk〉 is the coherent state of the entire field satisfying

.E(+)(r, t)
∏

k

|αk〉 = E(r, t)
∏

k

|αk〉. (2.29)

With the above as background, we can now discuss in more detail the coherent
states of a single mode optical field by dropping the mode index k. The coherent
state of a single mode harmonic oscillator .|α〉 is defined as the eigenstate of the
annihilation operator a via

.a|α〉 = α|α〉, (2.30)

where .α is a complex number. In hindsight, defining the coherent state as the eigen-
state of the annihilation operator may superficially appear to be a simple assumption.
But one has to realize that historically, before Glauber’s groundbreaking work,
the scientific communities were only interested in the eigenstates of Hermitian
operators, such as the position or momentum operators, which are experimentally
measurable. It was exactly Glauber who took the first step to bring in an eigenstate
of a non-Hermitian operator, which corresponds to the quantum electric field. With
such a brave assumption, a great new era of quantum theory of light was to unveiled.

Applying the nth excited state of the harmonic oscillator .〈n| to the both sides of
Eq. (2.30), one obtains the recursion relation for the scalar product .〈n|α〉, which is

.
√

n + 1〈n + 1|α〉 = α〈n|α〉. (2.31)

Solving the recursion relation by repeated substitution, one arrives at

.〈n|α〉 = αn

√
n! 〈0|α〉. (2.32)
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Utilizing the completeness relation, the coherent states can be expanded in terms of
the complete orthogonal basis .{|n〉} via

.|α〉 =
∑

n

|n〉〈n|α〉 = 〈0|α〉
∑

n

αn

√
n! |n〉. (2.33)

By imposing the state vector .|α〉 to have unit length, .〈α|α〉 = |〈0|α〉|2e|α|2 = 1, the
coherent states up to within a phase factor can be expressed as

.|α〉 = e− 1
2 |α|2 ∑

n

αn

√
n! |n〉. (2.34)

The definition of coherent states gives the probability .pn of finding n photons in the
coherent states as

.pn ≡ |〈n|α〉|2 = e−|α|2 |α|2n

n! , (2.35)

which shows that a coherent state has a photon statistics described by a Poisson
distribution centered at .|α|2 and with standard derivation .|α|, as illustrated in
Fig. 2.2.
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Fig. 2.2 Schematic of the Poisson distributions for coherent states .|α〉 with different mean photon
numbers .〈n〉 = |α|2
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The coherent state which corresponds to .α = 0 is the ground state of the har-
monic oscillator. An alternative way which provides a more intuitive understanding
is to define the coherent state as the displaced form of the ground state

.|α〉 = D(α)|0〉, (2.36)

where .D(α) is a unitary operator acting on the annihilation operator a, according to
the scheme

.D−1(α)aD(α) = a + α. (2.37)

It follows that since .D(α) is a unitary operator, .|α〉 is already normalized. By
multiplying .D−1(α) to the right side of Eq. (2.37), when applied to the state .|α〉,
one yields

.D−1(α)a|α〉 = aD−1(α)|α〉 + αD−1(α)|α〉. (2.38)

According to the new definition, .D−1(α)|α〉 = |0〉 is the ground state of the
oscillator, and thus .aD−1(α)|α〉 vanishes identically. Hence, we recover the original
definition of coherent states, .a|α〉 = α|α〉. One can now explicitly obtain the
expression of the displacement operator .D(α), if the phase of the coherent states
is chosen by selecting .D(0) = 1. Employing equation (2.37) for an infinitesimal
displacement .dα, .D(dα) can be uniquely written as

.D(dα) = 1 + a†dα − adα∗. (2.39)

One can show rather easily that the unitary operator .D(α) has the form for a finite
displacement

.D(α) = eαa†−α∗a. (2.40)

As a result, the coherent states .|α〉 can be written as

.|α〉 = eαa†−α∗a|0〉. (2.41)

In this definition, the coherent states can also be expanded in terms of the complete
orthogonal basis .{|n〉}. For this purpose, one can write the displacement operator
.D(α) as a product of exponential operators

.D(α) = eαa†−α∗a = e− 1
2 |α|2eαa†

e−α∗a (2.42)

by using the Baker-Campbell-Hausdorff (BCH) formula: if A and B are two
arbitrary operators such that the commutator .[A,B] commutes with each of them,

.[A, [A,B]] = [B, [A,B]] = 0, then .eAeB = eA+B+ 1
2 [A,B]. If applying the BCH
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formula to the case .A = αa† − α∗a and .B = βa† − β∗a, one immediately finds
that the displacement operators obey the multiplication law

.D(α)D(β) = D(α + β)e
1
2 (αβ∗−α∗β). (2.43)

It can be shown that, besides a phase factor .eαβ∗−α∗β , the displacement operators
form a commutative group under multiplication, in which the result of applying
the multiplication operation to two group elements does not depend on the order in
which they are written. Utilizing the multiplication law, Eq. (2.43), one can derive
the commutative law

.D(α)D(β) = D(β)D(α)eαβ∗−α∗β. (2.44)

The commutative law of the displacement operators can be used to calculate the
matrix element .〈α|D(β)|α〉 which connects the two coherent states .|α〉 and .〈α| as

.〈α|D(β)|α〉 = 〈0|D−1(α)D(β)D(α)|0〉 (2.45)

= 〈0|D−1(α)D(α)D(β)eβα∗−β∗α|0〉
= eβα∗−β∗α〈0|β〉 = eβα∗−β∗α− 1

2 |β|2 .

Analogously, one can show that the matrix element .〈β|D(ξ)|α〉 which connects the
two unlike coherent states .|α〉 and .〈β| is

.〈β|D(ξ)|α〉 = eβ∗α− 1
2 |α|2− 1

2 |β|2eξβ∗−ξ∗α− 1
2 |ξ |2 . (2.46)

Using .e−α∗a|0〉 = |0〉, one can express the coherent states as

.|α〉 = e− 1
2 |α|2eαa† |0〉 = e− 1

2 |α|2 ∑

n

(αa†)n

n! |0〉. (2.47)

Hence, using the definition of the nth excited state, .|n〉 = 1/
√

n!(a†)n|0〉, one can
obtain the expected relation

.|α〉 = e− 1
2 |α|2 ∑

n

αn

√
n! |n〉. (2.48)

2.3 Mathematical Properties

One of the fundamental mathematical principles discussed in any standard quantum
mechanics textbook [50–52] is the concept of a “complete Hilbert space.” In
this concept, any quantum mechanical action “can be expanded” in terms of an
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orthogonal set which is “complete.” To this end, as coherent states have proven to
be a most useful tool in the study of many quantum mechanical objects, it is worthy
to profoundly understand their mathematical structures.

A basic property of the coherent states .|α〉 is that any two such states are not
orthogonal. For values of .α′ close to .α, we expect that the coherent states are similar
in form with substantial overlap. In contrast, for values of .α′ very different from .α,
one would expect that the two coherent states are well separated with small overlap.
To show this, the scalar product .〈α|β〉 is

.〈α|β〉 = eα∗β− 1
2 |α|2− 1

2 |β|2 = e− 1
2 |α−β|2+i�(α∗β). (2.49)

It follows from above, .|〈α|β〉| = e− 1
2 |α−β|2 which is the overlap of any two well-

separated coherent states can be shown to be exponentially small, and they tend to
become approximately orthogonal.

As was previously mentioned, the states .|α′〉 and .|α〉 should be approximately
the same for two nearby points in the complex .α plane. This continuity property can
be proved by using the vector norm .‖|α〉‖2 = 〈α|α〉 which measures the distance
between two states. To establish the validity of this argument, we evaluate the vector
norm .‖|α〉 − |β〉‖2 as

.‖|α〉 − |β〉‖2 = 2(1 − �〈α|β〉) ≤ 2(|α| + |β|)|α − β|. (2.50)

The vector norm .‖|α〉 − |β〉‖ can be arbitrarily small, if the .α and .β are sufficiently
close. It should be noted that although the coherent states .|α〉 for a single mode
oscillator do not form an orthogonal set, it can be shown that they do form a
complete set. The key formula is the resolution of unity into projection operators,
which establishes the correspondence between the unit operator and the integral
over the complex .α plane of the projection operator .|α〉〈α|

.I =
∑

n

|n〉〈n| = 1

π

∫

|α〉〈α|d2α, (2.51)

where .d2α = d(�α)d(�α) is the differential element of area in the complex .α plane
and the integration extends over the entire complex .α plane. The precise meaning
of the resolution of unity is embodied in the formula for the scalar product

.〈φ|ψ〉 =
∑

n

〈φ|n〉〈n|ψ〉 = 1

π

∫

〈φ|α〉〈α|ψ〉d2α, (2.52)



18 2 Coherent States of Harmonic Oscillator

where .|φ〉 and .|ψ〉 are two arbitrary states. A direct elementary proof of Eq. (2.52)
is the following

.
1

π

∫

〈φ|α〉〈α|ψ〉d2α = 1

π

∫ ∞∑

n,m=0

α∗nαm

√
m!n! 〈φ|m〉〈n|ψ〉e−|α|2d2α (2.53)

= 1

π

∞∑

n,m=0

〈φ|m〉〈n|ψ〉√
m!n!

∫

α∗nαme−|α|2d2α,

where the order of summation and integration in the last step was interchanged. If
by introducing the polar coordinates such that .α = reiθ and .d2α = rdrdθ , the
integral can be shown as

.

∫

α∗nαme−|α|2d2α =
∫ ∞

0
rn+m+1e−r2

dr

∫ 2π

0
ei(m−n)θ dθ = πn!δmn. (2.54)

Substituting Eq. (2.54) into Eq. (2.53), it yields

.
1

π

∫

〈φ|α〉〈α|ψ〉d2α =
∞∑

n=0

〈φ|n〉〈n|ψ〉 = 〈φ|ψ〉, (2.55)

where the sum of the projection operators .|n〉〈n| over n is the unit operator in the
last step. With the resolution of unity, one obtains the expansion rule for an arbitrary
state .|ψ〉

.|ψ〉 = 1

π

∫

|α〉〈α|ψ〉d2α. (2.56)

The above demonstrates the completeness relation for the coherent states: the
vanishing of the function .ψ(α∗) ≡ 〈α|ψ〉 for all values of .α∗ implies the vanishing
of the state vector .|ψ〉 itself and vice versa. It establishes the important one-to-one
correspondence between the states .|ψ〉 of an oscillator and the functions .ψ(α∗) in
the complex .α plane.

It is worth noting that the interchange of summation and integration in Eq. (2.53)
can be rigorously justified by the dominated convergence theorem: let .f1, .f2, .· · · ,
.fN and R: .Z → R be functions such that .|fN(n)| ≤ g(n), .

∑∞
n=0 g(n) < ∞. Then

one can prove that

. lim
N→∞

∞∑

n=−∞
fN(n) =

∞∑

n=−∞
lim

N→∞ fN(n). (2.57)
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To establish the completeness relation rigorously, one may first evaluate the special
case when .|φ〉 and .|ψ〉 are the same states, and notice that

.
1

π

∫

|〈α|ψ〉|2d2α = lim
N→∞

∞∑

n=0

|〈n|ψ〉|2γN(n), . (2.58a)

γN(n) ≡ 2

n!
∫ N

0
r2n+1e−r2

dr, (2.58b)

where .γN(n) is a non-negative function satisfying the conditions .0 < γN(n) < 1
and .limN→∞ γN(n) = 1 for all n. Hence, the norm of the state .|ψ〉 can always be
expressed as

.〈ψ |ψ〉 =
∞∑

n=0

|〈n|ψ〉|2 =
∞∑

n=0

lim
N→∞ |〈n|ψ〉|2γN(n). (2.59)

Defining .fN(n) ≡ γN(n)g(n) and .g(n) ≡ |〈n|ψ〉|2, one immediately obtains

.|fN(n)| = |γN(n)g(n)| ≤ g(n), . (2.60a)

∞∑

n=0

g(n) =
∞∑

n=0

|〈n|ψ〉|2 = 〈ψ |ψ〉 < ∞, (2.60b)

where the last step in Eq. (2.60b) comes from the completeness of the Hilbert space.
Hence the convergence of the sequences can be readily established by using the
dominated convergence theorem

. lim
N→∞

∞∑

n=0

|〈n|ψ〉|2γN(n) =
∞∑

n=0

lim
N→∞ |〈n|ψ〉|2γN(n). (2.61)

It immediately yields

.
1

π

∫

〈ψ |α〉〈α|ψ〉d2α =
∞∑

n=0

|〈n|ψ〉|2 = 〈ψ |ψ〉. (2.62)

For the general case, the formula for the scalar product .〈φ|ψ〉 is obtained from
linearity.

Let us now consider the continuity properties for the function .ψ(α∗) = 〈α|ψ〉,
which can be expanded as

.ψ(α∗) = e− 1
2 |α|2

∞∑

n=0

α∗n

√
n! 〈n|ψ〉. (2.63)
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Utilizing the Cauchy-Schwarz inequality, it immediately follows that every such
.ψ(α∗) is bounded, .|〈α|ψ〉| ≤ 〈ψ |ψ〉1/2 = ‖|ψ〉‖ < ∞. In addition, the function
.ψ(α) is continuous on the entire complex plane,

.|ψ(α∗) − ψ(β∗)| ≤ ‖|α〉 − |β〉‖ · ‖|ψ〉‖ ≤ √
2(|α| + |β|)|α − β| · ‖|ψ〉‖,

where we have used the inequality equation (2.50) in the last step. While continuity
is a convenient property for complex-valued functions, it is not the strongest one.
In fact, .ψ(α∗) possesses stronger properties than continuity: it can be expanded as
a power series that converges on the entire complex plane. To show the validity

of this argument, one can define .f (α∗) = e
1
2 |α|2ψ(α∗) and evaluate the radius of

convergence of .f (α∗). It can be shown that the series in Eq. (2.63) is absolutely
convergent, since we have

.

∞∑

n=0

|α∗|n√
n! |〈n|ψ〉| ≤ ‖|ψ〉‖ ·

∞∑

n=0

|α∗|n√
n! ,

which converges for all .α∗ as the ratio of the nth term to the .(n − 1)th term tends to
zero as n tends to infinity. This convergent series thus represents a function which
is analytic throughout the entire complex plane. Namely, the function .f (α∗) =
e

1
2 |α|2〈α|ψ〉 defines an entire function of .α∗ for each .|ψ〉. Applying Schwarz’s

inequality, it immediately leads to .|f (α∗)| ≤ e
1
2 |α|2‖|ψ〉‖, which shows that .f (α∗)

is an entire function that grows no faster than .e
1
2 |α|2 . Substituting Eq. (2.63) in

Eq. (2.56), we immediately obtain the expansion of arbitrary states in terms of
coherent states

.|ψ〉 = 1

π

∫

|α〉f (α∗)e− 1
2 |α|2d2α. (2.64)

Now by taking the scalar product of both sites of Eq. (2.64) with the state .〈β|,
and using the relation .〈β|α〉 = eβ∗α− 1

2 |β|2− 1
2 |α|2 , one can easily derive the general

equation

.f (β∗) = e
1
2 |β|2〈β|ψ〉 = 1

π

∫

eβ∗α−|α|2f (α∗)d2α, (2.65)

which reveals that the function .f (α∗) fulfills an integral equation

.f (β∗) =
∫

K(β, α)f (α∗)dμ(α), dμ(α) = 1

π
e−|α|2d2α, (2.66)

where .dμ(α) is the element of measure and .K(β, α) = eβ∗α is the reproducing
kernel of the associated integral transform which satisfies .K(β, α) = K∗(α, β). It
is worth nothing that the expansion of arbitrary adjoint states is similar to that in
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Eq. (2.64). Too see this, we define .g(β) = e
1
2 |β|2〈φ|β〉 as an entire function of .β,

then the state .〈φ| can be expanded as

.〈φ| = 1

π

∫

〈φ|β〉〈β|d2β = 1

π

∫

〈β|g(β)e− 1
2 |β|2d2β. (2.67)

Employing the relation .〈β|α〉 = eβ∗α− 1
2 |α|2− 1

2 |β|2 again, the scalar product .〈φ|ψ〉
can be readily expressed as

.〈φ|ψ〉 = 1

π2

∫∫

g(β)f (α∗)eβ∗α−|α|2−|β|2d2αd2β (2.68)

=
∫∫

g(β)f (α∗)K(β, α)dμ(α)dμ(β).

We can use the integral identity (2.65) to carry out the integration over the variable
.α to find

.〈φ|ψ〉 =
∫

g(β)f (β∗)dμ(β) = 1

π

∫

〈φ|β〉〈β|ψ〉d2β. (2.69)

The above is exactly our basic starting relation, Eq. (2.52), the resolution of unity.
It should be underscored that the coherent states are not linearly independent of one
another, since any two such states are not in general orthogonal to each other. A
concrete example is that any given coherent states .|α〉 can be expressed linearly in
terms of all other states such that

.|α〉 = 1

π

∫

|β〉eβ∗α− 1
2 |α|2− 1

2 |β|2d2β. (2.70)

Such a multiplicity of decompositions is exactly the consequence of the over-
completeness of the coherent states. In other words, there should be many linear
dependencies among the coherent states. For example, we may have the following
identity

.
1

π

∫

|α〉αne− 1
2 |α|2d2α = 0, (2.71)

which holds for all integer .n > 0. Therefore, the expansion amplitudes .f (α∗) in
Eq. (2.64) cannot be replaced by more general functions like .F(α, α∗). Otherwise,
there would be many additional ways to express the arbitrary states in terms of
the coherent states. The uniqueness of the expansion equation (2.64) requires that
the expansion amplitude should depend analytically upon the variable .α∗. Such a
restriction is crucial to calculate the expansion amplitudes since one can construct
an explicit solution for them regardless of what initial representation is used.
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As an application of the completeness relation for the coherent states, the matrix
element of the displacement operator .〈m|D(ξ)|n〉 which connect the two different
number states .〈m| and .|n〉 can be evaluated as

.〈m|D(ξ)|n〉 = 1

π2

∫∫

〈m|β〉〈β|D(ξ)|α〉〈α|n〉d2αd2β (2.72)

= e− 1
2 |ξ |2

π2
√

m!n!
∫∫

eβ∗α+ξβ∗−ξ∗α−|α|2−|β|2α∗nβmd2αd2β.

where we have used the identity .〈β|D(ξ)|α〉 = eβ∗α− 1
2 |α|2− 1

2 |β|2eξβ∗−ξ∗α− 1
2 |ξ |2 in

the last step. Applying the integral identity equation (2.65) to the case .f (α∗) = α∗n,
we obtain

.
1

π

∫

e(β∗−ξ∗)α−|α|2α∗nd2α = (β∗ − ξ∗)n. (2.73)

Substituting the above formula into the double integral, one obtains the following
integral representation for the matrix element of the displacement operator

.〈m|D(ξ)|n〉 = e− 1
2 |ξ |2

π
√

m!n!
∫

eξβ∗−|β|2(β∗ − ξ∗)nβmd2β. (2.74)

It is of interest to see how this integral representation is expressed in terms of the
special functions. For the case .m ≥ n, the matrix elements can be summed in a
closed form by the introduction of an auxiliary parameter t as

.

∑

n

tne
1
2 |ξ |2

√
m!
n! 〈m|D(ξ)|n〉 = 1

π

∑

n

∫

eξβ∗−|β|2 (t |β|2 − tξ∗β)n

n! βkd2β

= 1

π

∫

eξβ∗−tξ∗β−(1−t)|β|2βkd2β

=
∑

l

(−tξ∗)l

l!
1

π

∫

eξβ∗−(1−t)|β|2βk+ld2β,

where .0 < t < 1 is an auxiliary parameter and .k = m − n is a positive integer.
Applying the integral identity

.
1

π

∫

eξβ∗−λ|β|2f (β)d2β = 1

λ
f

(
ξ

λ

)

(2.75)
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to the case .λ = 1 − t and .f (β) = βk+l and substituting the above formula into the
integration over .β, one gets a simple formula for the infinite sum

.

∑

n

tne
1
2 |ξ |2

√
m!
n! 〈m|D(ξ)|n〉 = ξk

(1 − t)k+1 exp

(−t |ξ |2
1 − t

)

. (2.76)

It is worth noting that what emerged in the above formula is precisely the generating
function for the associated Laguerre polynomials .Lk

n(x)

.

∑

n

tnLk
n(x) = 1

(1 − t)k+1
exp

( −tx

1 − t

)

. (2.77)

Hence, the matrix element for the displacement operator can be expressed in a
closed form

.〈m|D(ξ)|n〉 = e− 1
2 |ξ |2

√
n!
m!ξ

n−mLm−n
n (|ξ |2). (2.78)

2.4 Quantum Coherence and Distribution

From the above, we discussed the general properties of the coherent states,
especially its usage as a continuous basis of the Hilbert space. In the following,
we shall discuss the expansion of certain important operators, namely, the density
operators, in terms of the coherent states.

The density operator for a pure coherent state .|α〉 is simply the projection
operator .ρ = |α〉〈α|. Besides the pure coherent states .|α〉, another type of oscillator
states, which is also important for quantum optics, is the statistical mixtures of the
coherent states. The density operator for such a state is a well-known superposition
of the projection operator .|α〉〈α|

.ρ =
∫

d2αP (α)|α〉〈α|. (2.79)

This kind of operator ensures that the oscillator is a coherent state associated with an
unknown eigenvalue .α. Here the function .P(α), known as the Glauber-Sudarshan
P -representation for the density operator, can be regarded as a probability distri-
bution function of .α over the entire complex plane. Since the density operator is
Hermitian and normalized, i.e., .ρ† = ρ and .Trρ = 1, it implies that .P(α) is a real
function and obey the normalization condition

.Trρ =
∫

d2αP (α) = 1, (2.80)

where the trace of an outer product .|α〉〈β| is the inner product .〈β|α〉.
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In quantum optics, the primary goal is to understand the correlation and
coherence properties of the optical field. To this end, it is natural to describes the
field by the 2n-points correlation functions, which are defined as the expectation
value

.G(n)(x1, x2, · · · xn; y1, y2, · · · yn) (2.81)

= Tr{ρE(−)(x1) · · ·E(−)(xn)E(+)(y1) · · ·E(+)(yn)},

where .E(−)(xl) and .E(+)(yl) are the negative and positive frequency parts of the
electric field operator at the space-time points .xl and .yl , respectively. Since the
positive frequency part of the electric field operator, .E(+)(r, t), can be expanded
by a complete set of mode functions .uk

.E(+)(r, t) = i
∑

k

√
h̄ωk

2
akuk(r)e−iωkt , (2.82)

the first-order correlation function for a single mode electric field between two
distinct space-time points, i.e., .G(1)(x, x′), simply reduces to the form

.G(1)(x, x′) = Tr{ρE(−)(x)E(+)(x′)} (2.83)

= h̄ω

2
eiω(t−t ′)u∗(r)u(r′)Tr(ρa†a).

The above relation clearly demonstrated that the first-order correlation function is
not sensitive to the photon statistics, as it depends only on the mean photon number.
In order words, a laser beam and a thermal light can both have the same first-order
correlation properties, regardless of their photon statistics. As such, one needs the
second- and higher-order correlation function to distinguish the nature of the light
source. Similar to the condition for first-order coherence, an optical system is said to
exhibit nth-order coherence if all of its mth-order correlations for .m ≤ n factorized,
i.e.,

.G(n)(x1, · · · , xm; y1, · · · , ym) = E∗(x1) · · · E∗(xm)E(y1) · · · E(ym), (2.84)

where .E(xl) is a complex function, and all other cases with non-factorizable cor-
relations characterize partial coherence. In particular, the second-order correlation
function for a single mode electric field simply takes on the form

.G(2)(x1, x2; x′
1, x

′
2) = Tr{ρE(−)(x1)E(−)(x2)E(+)(x′

1)E
(+)(x′

2)} (2.85)

=
(

h̄ω

2

)2

eiω(t1+t2−t ′1−t ′2)u∗(r1)u∗(r2)u(r′
1)u(r′

2)Tr(ρa†2a2).
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To illustrate the physical meaning of the second-order correlation function, one may
turn to the Hanbury Brown-Twiss experiment [53, 54], in which a beam of light
from a mercury lamp is split into two beams by a half-silvered mirror, and fell
on the cathodes of two photo-multipliers, whose outputs were sent through band-
limited amplifiers to a correlator. This experiment is significantly different from
the Young double-slit experiment in that intensities of incident light, rather than
the amplitudes, are compared. Two absorption measurements are performed on the
same optical field, one at time t and one at .t + τ . One can show that this procedure
measures the quantity .|E(+)(r, t + τ)E(+)(r, t)|2. After averaging, this quantity is
precisely the second-order correlation function of light at the same space point .r and
two different time points at t and .t + τ

.G(2)(x1, x2; x2, x1) = Tr{ρE(−)(x1)E(−)(x2)E(+)(x2)E(+)(x1)} (2.86)

=
(

h̄ω

2

)2

|u(r)|4Tr(ρa†2a2),

where .x1 ≡ (r, t) and .x2 ≡ (r, t + τ). To better display the influence of the photon
statistics on the coherence properties of the optical field, one may compute the
normalized second-order correlation function given by

.g(2)(0) ≡ G(2)(x1, x2; x2, x1)

|G(1)(x1, x1)G(1)(x2, x2)| = Tr(ρa†2a2)

[Tr(ρa†a)]2 . (2.87)

Clearly, .g(2)(0) = 1 for coherent states .|α〉 of the field, which implies that
the coherent states exhibit second-order coherence. In fact, as can be seen from
Eq. (2.81), the coherent state is the only pure state which factorizes the 2n-points
correlation function and thus exhibits nth-order coherence for arbitrary n. As
another example, .g(2)(0) = 1 − 1/n < 1 for the n-photon state .|n〉 of the field.

In general, the calculation of high-order correlation functions involve the sta-
tistical expectation of normally ordered product of the annihilation and creation
operators in the form .a†nam. Employing equation (2.79), the P -representation for
the density operator, the expectation of .a†nam reduces to a simple mean of .α∗nαm

with respect to the function .P(α), that is

.Tr(ρa†nam) =
∫

d2αP (α)〈α|a†nam|α〉 =
∫

d2αP (α)α∗nαm. (2.88)

Hence, when an arbitrary operator expressed in terms of normally ordered product
of the annihilation and creation operators, i.e., .O ≡ ∑

m,n Cnma†nam, there exists
the following optical equivalence theorem:

.〈O〉 ≡ Tr(Oρ) =
∫

d2αP (α)O(α, α∗), (2.89)
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where .O(α, α∗) ≡ 〈α|O|α〉 = ∑
m,n Cnmα∗nαm. As an example, the average

number of photons in a single mode, defined by the statistical average of .a†a, is
just the mean squared absolute value of .α

.〈n〉 ≡ Tr(ρa†a) =
∫

d2αP (α)|α|2. (2.90)

Applying the resolution of unity, .I = ∑
n |n〉〈n|, we can expand the density operator

in terms of the complete orthogonal basis .{|n〉}

.ρ =
∑

n,m

|n〉〈n|ρ|m〉〈m| =
∑

n,m

ρnm|n〉〈m|. (2.91)

Hence, once the P -representation for the density operator is specified, the matrix
elements .ρnm can be easily described by the function .P(α)

.ρnm =
∫

d2αP (α)〈n|α〉〈α|m〉 = 1√
n!m!

∫

d2αP (α)αnα∗me−|α|2 . (2.92)

It follows then that the off-diagonal matrix elements vanish when .P(α) has the
spherical symmetry, i.e., .P(α) depends only on .|α|. Using the Glauber-Sudarshan
P -representation for normally ordered product of the annihilation and creation
operators, the normalized second-order correlation function for a single mode
optical field becomes

.g(2)(0) = 〈a†2a2〉
〈a†a〉2 =

∫
d2αP (α)|α|4

(
∫

d2αP (α)|α|2)2
. (2.93)

Hence, one immediately obtains the following non-classical inequality

.g(2)(0) = 1 +
∫

d2αP (α)(|α|2 − 〈a†a〉)2

〈a†a〉2 < 1, (2.94)

provided that the Glauber-Sudarshan P -representation of the field is not non-
negative definite, i.e., .P(α) is negative for at least some values of .α. In this regard,
.P(α) ceases to be considered as a classical probability distribution if the non-
classical inequality .g(2)(0) < 1 is fulfilled, i.e., the associated photon distribution
is narrower than the Poisson distribution, which is referred to as a sub-Poissonian
distribution. In contrast, when the Glauber-Sudarshan P -representation of the field
is non-negative definite, .P(α) can be regarded as a classical probability distribution,
and the associated photon distribution is wider than the Poisson distribution, which
is referred to as a super-Poissonian distribution.

In order to compute the Glauber-Sudarshan P -representation .P(α) from a given
density operator .ρ, one needs two distinct coherent states .|β〉 and .|−β〉. Then from
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Eqs. (2.79) and (2.49), it can be shown that

.〈−β|ρ|β〉 =
∫

d2αP (α)〈−β|α〉〈α|β〉 (2.95)

= e−|β|2
∫

d2αP (α)e−|α|2eβα∗−β∗α.

To better display this relation, one may let .α ≡ xα + iyα and .β ≡ xβ + iyβ . Then
Eq. (2.95) immediately leads to

.〈−β|ρ|β〉e|β|2 =
∫∫

dxαdyαP (α)e−|α|2e2i(yβxα−xβyα). (2.96)

Hence, the function .〈−β|ρ|β〉e|β|2 is nothing but the two-dimensional Fourier
transform of the function .P(α)e−|α|2 . Taking the inverse Fourier transform of
Eq. (2.96), one obtains

.P(α) = e|α|2

π2

∫∫

dxβdyβ〈−β|ρ|β〉e|β|2e2i(yαxβ−xαyβ) (2.97)

= e|α|2

π2

∫

d2β〈−β|ρ|β〉e|β|2eβ∗α−α∗β.

As an example, one may compute the Glauber-Sudarshan P -representation for
a thermal state. The thermal state, which is generated by a source in thermal
equilibrium at temperature T , is described by a canonical ensemble

.ρ = exp(−H/kBT )

Tr[exp(−H/kBT )] , (2.98)

where .kB is the Boltzmann constant and .H = h̄ω(a†a + 1/2) is the free-field
Hamiltonian. For simplicity, we consider here only the thermal state for a single-
mode optical field. Applying the resolution of unity, .I = ∑

n |n〉〈n|, one can readily
expand the density operator for the thermal state as

.ρ =
[

1 − exp

(−h̄ω

kBT

)]∑

n

exp

(−nh̄ω

kBT

)

|n〉〈n|. (2.99)

From the above relation, one can compute the photon statistics, i.e., the probability
.pn ≡ ρnn that the field contains n photons, which is given by the Boltzmann
distribution, as illustrated in Fig. 2.3

.pn =
[

1 − exp

(−h̄ω

kBT

)]

exp

(−nh̄ω

kBT

)

, (2.100)
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Fig. 2.3 Schematic of the photon statistics for thermal states with different temperatures, where
.kBT = 0.5 h̄ω, .h̄ω, and .2 h̄ω for the blue, green, and red solid curves, respectively

As the average number of photons in the thermal state is given by

.〈n〉 = Tr(ρa†a) = 1

eh̄ω/kBT − 1
, (2.101)

one can rewrite the density operator for the thermal state in terms of .〈n〉 as

.ρ =
∑

n

〈n〉n
(1 + 〈n〉)n+1

|n〉〈n|. (2.102)

A direction computation yields

.〈−β|ρ|β〉 =
∑

n

〈n〉n
(1 + 〈n〉)n+1 〈−β|n〉〈n|β〉 (2.103)

= e−|β|2

1 + 〈n〉
∞∑

n=0

(−|β|2)n
n!

( 〈n〉
1 + 〈n〉

)n

= e−|β|2

1 + 〈n〉 exp

( −|β|2
1 + 〈n〉−1

)

.
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Hence, using Eq. (2.97), one immediately obtains

.P(α) = 1

π〈n〉e
−|α|2/〈n〉. (2.104)

In other words, the Glauber-Sudarshan P -representation for a thermal state is given
by a Gaussian distribution, which is a non-negative definite function on the complex
.α-plane. As a direct application of the Glauber-Sudarshan P -representation, one
may compute the normalized second-order correlation function .g(2)(0) for a thermal
state, which is given by

.g(2)(0) =
1

π〈n〉
∫

d2αe−|α|2/〈n〉|α|4
〈n〉2 = 2〈n〉2

〈n〉2 = 2, (2.105)

which satisfies the classical inequality .g(2)(0) > 1. As another example of the
Glauber-Sudarshan P -representation, one may compute the P -representation for
a coherent state .|α0〉, which is described by the density operator .ρ = |α0〉〈α0|. A
direct computation yields

.〈−β|ρ|β〉 = exp(−|α0|2 − |β|2 + βα∗
0 − β∗α0). (2.106)

Hence, from Eq. (2.97), the P -representation for a coherent state is given by

.P(α) = δ(2)(α − α0), (2.107)

which shows that the Glauber-Sudarshan P -representation for a coherent state is a
two-dimensional delta function. As a final example, one can evaluate the Glauber-
Sudarshan P -representation for a number state .|n〉, of which the density operator is
described by .ρ ≡ |n〉〈n|. A direct computation yields

.〈−β|ρ|β〉 = 〈−β|n〉〈n|β〉 = e−|β|2 (−|β|2)n
n! . (2.108)

Hence, from Eq. (2.97), the P -representation for the number state is

.P(α) = e|α|2

π2n!
∫

d2β(−|β|2)neβ∗α−βα∗
(2.109)

= e|α|2

n!
∂2n

∂αn∂α∗n
δ(2)(n).

Hence, the Glauber-Sudarshan P -representation for a number state with .n > 0 is
not a non-negative definite function on the complex .α-plane, which is a consequence
of the quantum nature of the number state.



30 2 Coherent States of Harmonic Oscillator

Similar to the Glauber-Sudarshan P -representation, which is useful in evalu-
ating the normally ordered correlation functions of the creation and annihilation
operators, one may define another distribution on the complex .α-plane, namely,
the Husimi Q-presentation, which is useful in evaluating anti-normally ordered
correlation functions of the annihilation and creations. The Husimi Q-representation
for the density operator .ρ is defined as .1/π times the diagonal matrix element of .ρ

with respect to the coherent states

.Q(α) ≡ 1

π
〈α|ρ|α〉 = 1

π
e−|α|2 ∑

n,m

ρnm

α∗nαm

√
n!m! . (2.110)

The function .Q(α) can be interpreted as a probability distribution function so long
as the statistical expectation value of the operator involved is expressed in anti-
normal order product of the annihilation and creation operators

.Tr(ρama†n) = 1

π

∫

d2α〈α|ρ|α〉αmα∗n =
∫

d2αQ(α)αmα∗n. (2.111)

Hermiticity and normalization of the density operator require that .Q(α) is a real
function that obeys the normalization condition

.

∫

d2αQ(α) = 1. (2.112)

Unlike the function .P(α), the function .Q(α) is finite in the complex .α plane and
positive everywhere, which satisfies the inequality .0 ≤ Q(α) ≤ 1/π . To establish
the validity of this inequality, we shall express the density operator in the diagonal
form

.ρ =
∑

n

λn|ψn〉〈ψn|, (2.113)

where .|ψn〉 are the eigenstates of .ρ and .λn are the associated non-negative
eigenvalues that satisfy .0 ≤ λn ≤ 1, which leads to

.Q(α) = 1

π

∑

n

λn|〈α|ψn〉|2 ≥ 0, . (2.114a)

≤ 1

π

∑

n

〈α|ψn〉〈ψn|α〉 ≤ 1

π
. (2.114b)

Using the expression of the scalar product .〈β|α〉 = exp{−|α − β|2/2 + i�(β∗α)},
we immediately obtain the relation between the P - and Q-representations

.Q(β) = 1

π

∫

d2αP (α)e−|α−β|2 . (2.115)
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As an example, the Q-representation for a number state .|n〉 is given by

.Q(α) = e−|α|2 |α|2n

πn! , (2.116)

which is a non-negative and bounded function on the complex .α-plane. As another
example, the Q-representation for a thermal state, whose density matrix is described
by Eq. (2.102), has the form

.Q(α) = 1

π

∑

n

〈n〉n
(1 + 〈n〉)n+1

〈α|n〉〈n|α〉 (2.117)

= 1

π(1 + 〈n〉)e
− |α|2

1+〈n〉 .

Comparing Eqs. (2.104) and (2.117), one notices that in the limit of large mean
photon numbers, the expressions of the P - and Q-representations coincide. This is
because in the limit of large mean photon numbers, i.e., .〈n〉 → ∞, the distinctions
between normally and anti-normally ordered correlation functions of the creation
and annihilation operators vanish.

Using Eq. (2.91), the expansion of a density operator in terms of the basis .{|n〉},
any density operator .ρ can be represented in a unique way by a function .R(α∗, β)

of two complex variables defined by

.R(α∗, β) = 1

π
〈α|ρ|β〉 exp

[
1

2
|α|2 + 1

2
|β|2

]

= 1

π

∑

n,m

ρnm

α∗nβm

√
n!m! . (2.118)

The series on the right-hand side is absolutely convergent for all finite .α∗ and .β,
so that the function .R(α∗, β) is analytic in the entire complex .α∗ and .β plane. By
definition, the functions .Q(α) and .R(α∗, β) are simply related by

.Q(α) = R(α∗, α)e−|α2|. (2.119)

Hence .Q(α) is just a boundary value of the analytic function .R(α∗, β). The matrix
elements of the density operator can easily found by multiplying .R(α∗, β) by
.αiβ∗j e−|α|2−|β|2 and integrating over the complex .α∗ and .β plane

.

∫

αiβ∗j e−|α|2−|β|2R(α∗, β)d2αd2β (2.120)

=
∑

n,m

ρnm

π
√

n!m!
∫

α∗nαie−|α|2d2α

∫

β∗j βme−|β|2d2β

=
∑

n,m

ρnm

π
√

n!m!π
2n!m!δniδjm = π

√
i!j !ρij .
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where we have used the identity equation (2.54) in the last step, so that all the terms
except .n = i and .m = j vanish in the sum and we obtain

.ρij ≡ 〈i|ρ|j 〉 = 1

π

∫
αiβ∗j

√
i!j ! e

−|α|2−|β|2R(α∗, β)d2αd2β. (2.121)

Up to now, we only discussed the Glauber-Sudarshan P -representation and
the Husimi Q-presentation associated with normally and anti-normally ordered
correlation functions of the creation and annihilation operators. But there exists one
other possibility, that is, a distribution function associated with a symmetric ordering
of the creation and annihilation operators in a classical fashion. It is well known
that in classical mechanics, the state of a system is always specified by the values
of the coordinate q and the momentum p in the phase space. For a given initial
condition, the system evolves deterministically under the equations of motion. It
can be visualized by considering the momentum and coordinate as the coordinates
of a point in the two-dimensional phase space. The P -representation, or the Q-
representation for the density operator, if interpreted correctly, could be regarded as
a probability distribution function in the phase space, where the complex .α plane
plays the role of the two-dimensional phase space. However, due to the Heisenberg
uncertainty principle, the coordinate q and the momentum p are not simultaneously
measurable, and hence the concept of a joint probability distribution for the
coordinate and momentum, or even the concept of a phase space, is at best subtle in
quantum mechanics.

Since the birth of quantum mechanics, there have been significant efforts
to restore the phase space concept for the description of quantum mechanical
uncertainties. Among these attempts, the Wigner distribution, introduced by Eugene
Wigner in his 1932 seminal work titled “On the Quantum Correction for Thermody-
namics Equilibrium” [55], can be regarded as the prototype of all those phase space
probability distribution functions. For a single particle specified by a wave function
.ψ(q), the Wigner distribution .W(p, q) is defined as

.W(p, q) ≡ 1

πh̄

∫

ψ∗(q + y)e2ipy/h̄ψ(q − y)dy, (2.122)

where the integration with respect to y is carried out from .−∞ to .∞. The Wigner
distribution has many properties similar to a joint probability distribution for the
coordinate and momentum. For example, the probability of finding the particle
at a given coordinate q or momentum p can be obtained by integrating over the
other variable. If we integrate the Wigner function .W(p, q) with respect to p, we
immediately obtain

.

∫

W(p, q)dp = |ψ(q)|2, (2.123)
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which is exactly the probability of finding the particle at coordinate q. Likewise, if
we integrate the Wigner function .W(p, q) with respect to q, we have

.

∫

W(p, q)dq = 1

πh̄

∫∫

ψ∗(q + y)e2ipy/h̄ψ(q − y)dqdy (2.124)

=
∣
∣
∣
∣

1√
2πh̄

∫

ψ(u)e−ipu/h̄du

∣
∣
∣
∣

2

,

which also gives the correct probability of finding the particle with momentum
p. Unfortunately, the Wigner distribution .W(p, q) cannot be interpreted as the
simultaneous probability for the coordinate and momentum, since it may take on
negative values for some regions of p and q, as indicated by Wigner himself. Hence,
the difference between classical probabilistic mechanics and quantum mechanics is
that quantum probabilities, in some way, assume negative values.

As a first example, we shall calculate the Wigner function .W(p, q) for a one-
dimensional harmonic oscillator. We can now use the eigenstates of the quantum
harmonic oscillator

.φn(q) = 1
√

2nn!ξ√
π

e
− q2

2ξ2 Hn

(
q

ξ

)

, (2.125)

to express the Wigner function in terms of an integral

.Wn(p, q) = 1

πh̄

e−q2/ξ2

2nn!ξ√
π

∫

e
− y2

ξ2 + 2ipy
h̄ Hn

(
q + y

ξ

)

Hn

(
q − y

ξ

)

dy (2.126)

= 1

πh̄

e−x2+z2
0

2nn!√π

∫

e−z2
Hn(x + z + z0)Hn(x − z − z0)dz,

where .ξ = √
h̄/mω0 is the characteristic length for the harmonic oscillator, .z =

y/ξ − z0, .z0 = iξp/h̄, .x = q/ξ are all dimensionless parameters, and .Hn(z) is
the n-th Hermite polynomial. If we employ the identity .Hn(−z) = (−1)nHn(z), the
Wigner function is given by

.Wn(p, q) = (−1)n

πh̄

e−αβ

2nn!√π

∫

e−z2
Hn(z + α)Hn(z − β)dz, (2.127)

where .α = x + z0 and .β = x − z0. We can reduce this integral to the known special
functions by using the orthogonality of the Hermite polynomials and the relation
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.H ′
n(z) = 2nHn−1(z), which leads to

.

∫

e−z2
Hn(z + α)Hn(z − β)dz (2.128)

=
∑

l,m

2ln!
(n − l)!

2mn!
(n − m)!

αl

l!
(−β)m

m!
∫

e−z2
Hn−l (z)Hn−m(z)dz.

By applying the orthogonality relations

.

∫

e−z2
Hn(z)Hm(z)dz = 2nn!√πδnm, (2.129)

we obtain the following integral identity,

.

∫

e−z2
Hn(z + α)Hn(z − β)dz (2.130)

= 2nn!√π
∑

l

(
n

l

)
(−1)l

l! (2αβ)l = 2nn!√πLn(2αβ),

where .Ln(z) is the n-th order Laguerre polynomial. Substituting this integral
identity into Eq. (2.127), we obtain

.Wn(p, q) = (−1)n

πh̄
e
− q2

ξ2 − ξ2p2

h̄2 Ln

(
2q2

ξ2 + 2ξ2p2

h̄2

)

(2.131)

= (−1)n

πh̄
e
− 2H

h̄ω0 Ln

(
4H

h̄ω0

)

,

where .H = (p2/m+mω2
0q

2)/2 is the Hamiltonian of the harmonic oscillator. As a
result of the oscillatory structure in the Laguerre polynomials, the Wigner function
is positive only for the ground state of the harmonic oscillator, and it may take
negative values for all the higher excited states. Specifically, the first three Laguerre
polynomials are:

.L0(z) = 1, L1(z) = 1 − z, L2(z) = 1 − 2z + z2/2. (2.132)

To better display the Wigner distribution for a one-dimensional harmonic oscillator,
one may rescale the momentum and coordinate according to .P → ξp/h̄ and .Q →
q/ξ , where .ξ = √

h̄/mω0 is the characteristic length for the harmonic oscillator.
Hence, in the dimensionless unit, the Wigner distribution .W(P,Q) for the ground
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state, first excited state, and the second excited state is explicitly given by (Figs. 2.4,
2.5, and 2.6)

.W0(P,Q) = 1

πh̄
e−(P 2+Q2), (2.133)

W1(P,Q) = −1

πh̄
e−(P 2+Q2)

[
1 − 2

(
P 2 + Q2

)]
,

W2(P,Q) = 1

πh̄
e−(P 2+Q2)

[

1 − 4
(
P 2 + Q2

)
+ 2

(
P 2 + Q2

)2
]

.

For an arbitrary density matrix .ρ, one may define the associated Wigner
distribution .W(p, q) as

.W(p, q) ≡ 1

(2π)2

∫

dudvei(uq+vp)Tr[e−i(uq̂+vp̂)ρ], (2.134)

where .[q̂, p̂] = ih̄. To show that the above definition coincides with that of Wigner’s
original distribution when the density operator is a pure state, one may apply the
Baker-Campbell-Hausdorff formula .eA+B = eAeBe−[A,B]/2 to the case .A = −ivp̂
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Fig. 2.4 The Wigner distribution function .W0(P,Q) for the ground state of the harmonic
oscillator, where .P ≡ ξp/h̄, .Q ≡ q/ξ , and .ξ = √

h̄/mω0
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Fig. 2.5 The Wigner distribution function .W1(P,Q) for the first excited state of the harmonic
oscillator, where .P ≡ ξp/h̄, .Q ≡ q/ξ , and .ξ = √

h̄/mω0

and .B = −iuq̂, so that

.W(p, q) = 1

4π2

∫

dudvei(vp+uq)Tr(e−ivp̂e−iuq̂ρ)e−iuvh̄/2 (2.135)

= 1

4π2

∫

dudvei(vp+uq)Tr(e−ivp̂/2e−iuq̂ρe−ivp̂/2)e−iuvh̄/2,

where we have used the cyclic invariance of the trace. One may then express the
trace in the coordinate representation and obtains

.W(p, q) = 1

4π2

∫

dudvei(vp+uq)dq ′〈q ′|e− ivp̂
2 e−iuq̂ρe− ivp̂

2 |q ′〉e− iuvh̄
2 (2.136)

= 1

4π2

∫

dudvei(vp+uq)dq ′〈q ′ + vh̄

2
|e−iuq̂ρ|q ′ − vh̄

2
〉e− iuvh̄

2

= 1

4π2

∫

dudveivpdq ′eiu(q−q ′)〈q ′ + vh̄

2
|ρ|q ′ − vh̄

2
〉,
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Fig. 2.6 The Wigner distribution function .W2(P,Q) for the second excited state of the harmonic
oscillator, where .P ≡ ξp/h̄, .Q ≡ q/ξ , and .ξ = √

h̄/mω0

where we have used the relation .e−ivp̂/2|q ′〉 = |q ′ − vh̄/2〉. After evaluating the
integral with respect to u, one immediately obtains

.W(p, q) = 1

4π2

∫

dudveivpdq ′eiu(q−q ′)〈q ′ + vh̄

2
|ρ|q ′ − vh̄

2
〉, (2.137)

= 1

2π

∫

dveivpdq ′δ(q − q ′)〈q ′ + vh̄

2
|ρ|q ′ − vh̄

2
〉,

= 1

2π

∫

dveivp〈q + vh̄

2
|ρ|q − vh̄

2
〉,

After the change of coordinate .y = vh̄/2, one readily see that Eq. (2.137) is
equivalent to Wigner’s original definition, Eq. (2.122), when the density operator
.ρ ≡ |ψ〉〈ψ | is a pure state. Finally, the definition equation (2.137) of the Wigner
distribution can be recast into a more convenient form

.W(α) ≡ 1

π2

∫

d2ηeαη∗−α∗ηTr[D(η)ρ], (2.138)

where .D(η) ≡ eηa†−η∗a is the displacement operator and .η ≡ (v − iu)/
√

2.
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Exercises

2.1. From Eq. (2.5), derive the following relation

.H ′
n(x) = 2nHn−1(x).

2.2. Derive the recursion relation for the Hermite polynomials

.Hn+1(x) − 2xHn(x) + 2nHn−1(x) = 0.

2.3. Show that the Hermite polynomials satisfy the linear homogeneous second
order differential equation

.H ′′
n (x) − 2xH ′

n(x) + 2nHn(x) = 0.

2.4. From Eq. (2.6), calculate the first five Hermite polynomials.

2.5. Prove that the Hermite polynomials Hn(x) are alternately even and odd, which
have the following general forms when expanded in decreasing powers of x

.(2x)n − n(n − 1)

1! (2x)n−2 + n(n − 1)(n − 2)(n − 3)

2! (2x)n−4 − . . . .

2.6. Using Eq. (2.8), show that the mean values of the coordinate and the momen-
tum of the coherent states are x̄ = A cos ω0t , p̄ = −h̄A sin ω0t .

2.7. Using Eq. (2.11), show that the coherent state is a minimum uncertainty state:
the uncertainties of the coordinate and the momentum are �x = 1/

√
2 and �p =

h̄/
√

2.

2.8. Using Eqs. (2.17) to (2.20), derive equation (2.21) from the expression of the
electromagnetic energy in the rationalized units

.H = 1

2

∫

(E2 + B2)dr.

2.9. Using Eqs. (2.22) and (2.23), prove that the basis states |nk〉 are normalized
and orthogonal, 〈nk|nk′ 〉 = δkk′ .

2.10. Show that the probability of having n photons in a coherent state |α〉 is a
Poisson distribution with mean value |α|2

.|〈n|α〉|2 = |α|2n

n! e−|α|2 .
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2.11. Calculate the average photon number 〈n〉 = 〈α|a†a|α〉 and the variance
(�n)2 = 〈α|a†aa†a|α〉 − 〈α|a†a|α〉2. Show that the average photon number and
the variance are both equal to |α|2

.(�n)2 = 〈n〉 = |α|2.

2.12. Let A and B be two arbitrary operators, and let f (s) = esABe−sA. Derive the
operator expansion theorem

.esABe−sA = B + s[A,B] + s2

2! [A, [A,B]] + . . . .

For any operator function f (B) having a power series in B, derive the similarity
transformation theorem

.esAf (B)e−sA = f (esABe−sA).

Specifically, for any pair of operators A and B whose commutator [A,B] is an
ordinary number c, prove that

.esAf (B)e−sA = f (B + cs).

2.13. Using the operator expansion theorem, derive the similarity transformations
for the creation and annihilation operators

.esa†aae−sa†a = ae−s , es†aa†e−sa†a = a†es.

e−αa†+α∗aaeαa†−α∗a = a + α, e−αa†+α∗aa†eαa†−α∗a = a† + α∗.

Use them to prove the following identities.

.esa†af (a, a†)e−sa†a = f (ae−s , a†es),
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2.14. Let f (a, a†) be a function of the creation and annihilation operators; prove
the following derivative theorems

.
∂f (a, a†)

∂a
= −[a†, f (a, a†)], ∂f (a, a†)

∂a† = [a, f (a, a†)].

2.15. If A and B are two operators such that the commutator [A,B] commutes with
each of them, [A, [A,B]] = [B, [A,B]] = 0, prove the Baker-Campbell-Hausdorff
formula

.eAeB = eA+B+ 1
2 [A,B].

2.16. Using the multiplication law of the displacement operators, Eq. (2.43), derive
equation (2.46).

2.17. From the definition of coherent states, derive equation (2.49).

2.18. Using Eq. (2.49), the expression of the scalar product 〈α|β〉, prove the
inequality equation (2.50).

2.19. Prove the dominated convergence theorem: let f1, f2, · · · , fN and R: Z →
R be functions such that |fN(n)| ≤ g(n),

∑∞
n=0 g(n) < ∞. Prove that

. lim
N→∞

∞∑

n=−∞
fN(n) =

∞∑

n=−∞
lim

N→∞ fN(n).

2.20. Using Eq. (2.62) and the following identity

.〈φ|ψ〉 = 1

4
(〈φ + ψ |φ + ψ〉 − 〈φ − ψ |φ − ψ〉

+ i〈φ + iψ |φ + iψ〉 − i〈φ − iψ |φ − iψ〉)

to derive the general case for 〈φ|ψ〉 from linearity.

2.21. By direct calculation, prove the following integral identity

.
1

π

∫

eβ∗α−|α|2α∗nd2α = β∗n,

which is a special case of Eq. (2.65).

2.22. By direct calculation, prove the following integral identity
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.
1

π

∫

eβ∗α−|α|2αnd2α = δn0,

and use it to derive equation (2.71).

2.23. From the integral representation for the matrix element of the displacement,
Eq. (2.74), prove directly that 〈m|D(0)|n〉 = δmn and

.〈m|D(ξ)|0〉 = e− 1
2 |ξ |2 ξm

√
m! , 〈0|D(ξ)|n〉 = e− 1

2 |ξ |2 (−ξ∗)n√
n! .

2.24. Show that the normalized second-order correlation function g(2)(0) for the
n-photon state |n〉 of the field has the form

.g(2)(0) = 1 − 1/n.

2.25. Using Eq. (2.92), examine the validity of Trρ = ∑
ρnn = 1.

2.26. Verify Eq. (2.97).

2.27. Prove that the series
∑∞

n=1 nxn converges and equals to x/(1 − x)2 when
|x| < 1. Use the result to verity equation (2.101).

2.28. Verify Eq. (2.104).

2.29. Using ρ† = ρ and Trρ = 1, prove that all the diagonal matrix elements of
the density operator are real and non-negative; using the positive definiteness of the
density operator, prove the inequalities |ρnm|2 ≤ ρnnρmm.

2.30. Prove that if for any bounded operator Â, A(α) = 〈α|Â|α〉 = 0 in any finite
domain over the complex α plane, then A(α) ≡ 0 over the entire complex α plane,
that is, the operator Â itself is identity zero.

End of Chapter Problems

1. In this problem, we will show that a classical prescribed source of radiation
always gives rise to a coherent state of the electromagnetic field. This fact was
first indicated by Glauber in 1963. To simplify the discussion, we consider a
single-electron atom interacting with a quantized electromagnetic field. In the
electric dipole approximation, the interaction between atom and electromagnetic
field is described by the Hamiltonian H = HA + HF − er · E, where r is
the position vector of the atom, HF = ∑

k h̄ωk(a
†
kak + 1/2) is the energy of

the free-field expressed via the creation and annihilation operators, and HA =∑
i Ei |i〉〈i| = ∑

i Eiσii is the energy of the atom expressed via the atomic
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transition operators σij ≡ |i〉〈j |. In terms of the electric-dipole transition matrix
elements dij ≡ e〈i|r|j 〉, we have er = ∑

ij e|i〉〈i|r|j 〉〈j | = ∑
ij dij σij . We now

proceed to a two-level atom with deg = dge, which yields er = dge(σ+ + σ−)

and HA = h̄�σz + 1
2 (Ee + Eg), where σ− ≡ |g〉〈e|, h̄� ≡ 1

2 (Ee − Eg) and
σz ≡ 1

2 (σee − σgg). According to Eqs. (2.17) and (2.18), we obtain

. − er · E = −i
∑

k

√
h̄ωk

2
(σ+ + σ−)dge · (akuk(r)e−iωkt + a

†
ku

∗
k(r)e

iωkt )

≡ h̄
∑

k

(σ+ + σ−)(gkak + g∗
k a

†
k ).

In the rotating-wave approximation, we keep terms like σ−a
†
k and σ+ak , which

describes the process of creating a photon of mode k by moving the electron from
the upper to the lower state, and the process of moving the electron from the lower
to the upper state by absorbing a photon of mode k. Thus, the Hamiltonian which
describes the interaction between a two-level atom and an electromagnetic field
can be written as H = h̄�σz + h̄

∑
k ωka

†
kak + h̄

∑
k(gkσ+ak +g∗

k σ−a
†
k ), where

we have omitted the constant energy term 1
2 (Ee + Eg) in HA, and the zero-point

energy
∑

k
1
2 h̄ωk in HF . In general, the Hamiltonian in quantum optics which

describes the interaction between a collection of two-level atoms and a quantized
electromagnetic field can be written as

.H = h̄
∑

i

�iσ
i
z + h̄

∑

k

ωka
†
kak + h̄

∑

i,k

(gikσ
i+ak + g∗

ikσ
i−a

†
k ).

If we regard the atomic system as a classical source, and treat the Pauli operators
as c-numbers, we obtain

.HF = h̄
∑

i

〈�iσ
i
z 〉 + h̄

∑

k

ωka
†
kak + h̄

∑

i,k

(gik〈σ i+〉ak + g∗
ik〈σ i−〉a†

k )

≡ h̄
∑

k

ωka
†
kak + h̄

∑

k

[λk(t)a
†
k + λ∗

k(t)ak] + constant,

where the constant energy term h̄
∑

i〈�iσ
i
z 〉 is omitted in HF . Without loss of

generality, we may only consider a single-mode optical field, so that the equation
of motion for the field becomes i∂t |ϕ(t)〉 = [ωa†a + λ(t)a† + λ∗(t)a]|ϕ(t)〉.
Prove that if the state of the field is initially prepared in the vacuum state |0〉, it
is a coherent state at any time t up to a time-dependent phase factor.



3Schrödinger’s Cat States

3.1 EPR Paradox, Cat States and Entanglement

As one of the founders of quantum mechanics, Einstein never ceased to raise doubts
as to whether the quantum theory is a complete theory of nature. In the May 15,
1935 issue of Physical Review, Einstein co-authored a landmark paper with his two
assistants at the Institute for Advanced Study, Boris Podolsky and Nathan Rosen
[56], in which he initiated a profound and insightful reflection on what was generally
accepted quantum mechanical orthodoxy. In this paper, entitled “Can Quantum-
Mechanical Description of Physical Reality Be Considered Complete?”, Einstein,
Podolsky, and Rosen (a paper now known as the initials of the three authors “EPR”)
demonstrated that there is an incompatibility between locality, separability, and
completeness in the description of physical systems by means of wave functions
which may lead to a dilemma—one can agree on any one of these premises but never
all three. Although quantum nonlocality and nonseparability were not validated
until decades after Einstein’s death, the EPR paper is still among the top cited
papers ever published in physical review journals, as it was the first to introduce a
special property of composite quantum systems now known as entanglement. Quite
remarkable, this concept becomes the cornerstone of the contemporary quantum
information science.

The EPR incompleteness argument is based on two principles: (1) the separa-
bility principle asserts that any two spatially separated systems possess their own
separable real states, and (2) the locality principle asserts that the real state of a
system cannot be altered immediately as a consequence of measurements made on
another system at a spatially separated location, i.e., the real state of a system can
only be altered by local effects propagating with finite, sub-luminal velocities. In
the EPR paper, Einstein and co-authors wrote that “at the time of measurement the
two systems no longer interact, no real change can take place in the second system
in consequence of anything that may be done to the first system.” Both of these
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principles are fundamentally rooted in everyday thought and are fundamental to the
theory of relativity and other field theories.

The logical flow of the EPR paper is as follows: Einstein and co-authors first
established a completeness condition and then aimed to show that at least in one
special case involving previously interacting systems, the quantum theory failed to
satisfy this necessary condition. The completeness condition in the original EPR
paper is a one-sentence assertion: “every element of the physical reality must have a
counterpart in the physical theory.” But the existence of elements of physical reality
requires a criterion of physical reality: “If, without in any way disturbing a system,
we can predict with certainty (i.e. with probability equal to unity) the value of a
physical quantity, then there exists an element of physical reality corresponding to
this physical quantity.” In other words, the sufficient condition for the existence of
elements of physical reality is the existence of predetermined values for physical
quantities.

With these premises, Einstein and co-authors proposed a gedanken experiment
which involves a non-factorizable wave function describing two particles moving
away from a source into spatially separated regions, and yet always having
maximally correlated position, and anti-correlated momenta. Here, non-factorizable
means that a wave function cannot be factorized as a simple product of wave
functions of its local constituents. In particular, Einstein and co-authors considered
the wave function defined in a position representation

.�(x1, x2) =
∫ ∞

−∞
e

ip
h̄

(x1−x2+x0)dp, (3.1)

where .x0 is a constant separation between the two particles. A key issue indicated by
Einstein and co-authors is that one may expand the wave function .�(x1, x2) in more
than one basis, which corresponds to different experimental settings. For example,
one may expand the wave function .�(x1, x2) in terms of the eigenfunction .up(x1)

of the momentum of the first particle

.�(x1, x2) =
∫ ∞

−∞
ψp(x2)up(x1)dp, (3.2)

where .up(x1) ≡ e
i
h̄
px1 and .ψp(x2) ≡ e

i
h̄
p(x0−x2) satisfy .p̂1up(x1) = pup(x1) and

.p̂2ψp(x2) = −pψp(x2). Then, according to quantum mechanics, one may make an
instant prediction with certainty that a measurement of the momentum of the second
particle is .−p, if the momentum of the first particle is measured to be p. Similarly,
one may expand the wave function .�(x1, x2) in terms of the eigenfunction .vx(x1)

of the position of the first particle

.�(x1, x2) =
∫ ∞

−∞
ϕx(x2)vx(x1)dx, (3.3)
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where .vx(x1) ≡ δ(x1−x) and .ϕx(x2) ≡ hδ(x−x2+x0) satisfy .q̂1vx(x1) = xvx(x1)

and .q̂2ϕx(x2) = (x + x0)ϕx(x2). Then, one may make an instant prediction with
certainty that a measurement of the position of the second particle is .x + x0, if the
position of the first particle is measured to be x. As long as the two particles are
sufficiently far apart, these predictions of experiment outcomes are made without
disturbing the second particle, based on the locality principle, and so, based upon
the criterion of physical reality mentioned above, Einstein and co-authors deduced
that both the measurement outcomes for the second particle preexist, in the form
of “elements of reality”—the perfect correlation in positions and anti-correlation
in momenta between the two spatially separated particles implies the existence
of two “elements of reality” that are simultaneously predetermined with absolute
definiteness for both the measurement outcomes for the second particle. How-
ever, according to the uncertainty principle in quantum mechanics, simultaneous
determinacy for both the position and momentum is not allowed for any quantum
state. Hence, Einstein and co-authors arrived at the conclusion that “the quantum-
mechanical description of physical reality given by wave functions is not complete.”
In short, one can only avoid this conclusion either by assuming that the separate real
state of a system is changed by what happens in a causally separated region, or
spatially separated systems do not possess separate states at all. But later, as was
validated by various experiments over the last half-century, nature indeed prefers
quantum-mechanical description of reality without the separability, assigning non-
decomposable joint state even to largely separated previously connecting systems.

Unlike the EPR incompleteness argument that is entirely based on the separabil-
ity and locality principles, Schrödinger focuses on a putative incompleteness in the
quantum-mechanical description of macroscopic observables through his famous
cat paradox, which first appeared in his seminal paper titled “The Present Situation
in Quantum Mechanics” published in 1935 [57]. In this mind-penetrating paper,
Schrödinger designed a gedanken experiment to highlight a seemingly absurdity
in human’s normal physical mindset of the quantum superposition principle—a cat
which is hidden in a box could be simultaneously alive and dead. In the original
text, Schrödinger wrote: “a cat is penned up in a steel chamber, along with the
following device (which must be secured against direct interference by the cat): in
a Geiger counter there is a tiny bit of radioactive substance, so small, that perhaps
in the course of the hour one of the atoms decays, but also, with equal probability,
perhaps none; if it happens, the counter tube discharges and through a relay releases
a hammer which shatters a small flask of hydrocyanic acid. If one has left this entire
system to itself for an hour, one would say that the cat still lives if meanwhile
no atom has decayed. The psi-function of the entire system would express this
by having in it the living and dead cat (pardon the expression) mixed or smeared
out in equal parts.” A measurement apparatus that is capable of measuring the
atom in a superposition of not decayed and decayed which projects the cat into a
superposition of alive and dead defines what is the “Schrödinger’s cat paradox,” a
proposal which has profoundly challenged our common sense that a cat is, or can be,
either alive or dead in the human-scale world. With the vast amount of research on
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quantum information processing in the last three decades, we came to realize that
mesoscopic Schrödinger cat states, such as the superpositions of coherent states,
are extremely sensitive to quantum decoherence, or the environmentally induced
reduction of quantum superpositions into statistical mixtures and classical behavior
[58–60]. Thus, in the macroscopic scale where such decoherence is palpable, it
makes interference pattern observation exceedingly difficult, if not impossible.

The Schrödinger’s cat paradox has still baffled the physicists and laymen alike
after more than eight decades. It is still under intense debate regarding its implica-
tions in the measurement problem and the quantum-classical boundary. Although
Schrödinger’s hypothetical cat states seem not to appear in the macroscopic world,
employing the groundbreaking experimental techniques developed in recent years,
researchers are able to measure and manipulate individual quantum systems and
have succeeded in producing Schrödinger cat-like states in mesoscopic systems.
For example, one may prepare Schrödinger cat-like states through coherent states of
light, which may be represented by the entangled superposition state

.|ψ〉 = 1√
2
(|α〉| ↑〉 + | − α〉| ↓〉), (3.4)

where .|α〉 and .| − α〉 are a pair of coherent states with opposite amplitudes which
refer to the states of a live and dead cat and .| ↑〉 and .| ↓〉 are the spin-1/2
eigenstates for .Ĵz which refer to the internal states of an atom which has and has
not radioactively decayed.

In contrast to the entangled Schrödinger cat states for the whole atom-cat system,
the coherent superposition of quasi-classical states such as coherent states of light
also resembles the essential features of Schrödinger’s superposition of dead and
alive cat states, which may be represented by

.|ψ〉 = 1√
2(1 ± e−2|α|2)

(|α〉 ± | − α〉), (3.5)

where the plus and minus signs are for the even- and odd-cat states. Another
example of the coherent superposition of dead and alive cat is the multi-atom
Greenberger-Horne-Zeilinger (GHZ) state which consists of N spin-1/2 particles
being in an equal superposition of all spins up or all spins down

.|ψ〉 = 1√
2
(| ↑〉⊗N + | ↓〉⊗N), (3.6)

which has already been demonstrated experimentally up to .N = 20 [48, 49]. In the
next section, we will discuss experimental realizations of the entangled light-matter
Schrödinger cat state and the optical cat states consisting of a superposition of two
coherent states of light.
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3.2 Experimental Realization

In the past decades, research in connect to coherent states have been experiencing
a steady but significant growth due to their increasing and fundamental connection
in quantum information processing and communication. By being non-spreading
wave packets, which are centered along the classical particle trajectories, coherent
states utilized in quantum optics become key to the understanding of how in a
large-scale quantum-to-classical transition can occur. With this aim, it is quite
natural that the preparation, maintenance, and calibration of superposition of
multiple coherent states had become the central theme of quantum information
science.

The superpositions of distinct coherent states are of special interest, since
they could mimic Schrödinger’s famous cat states. In 1986, Yurke and Stoler
made the earliest attempt to construct superpositions of coherent states. They
presented an ingenious proposal which was based on the physics of nonlinear fiber
optics. In their paper titled “Generating Quantum Mechanical Superpositions of
Macroscopically Distinguishable States via Amplitude Dispersion” [61], the authors
demonstrated that a coherent state of light propagating along an optical fiber with
Kerr nonlinearity could split into a superposition of two distinct coherent states
with opposite amplitudes. To be precise, the Hamiltonian which describes the
transmission of light along an optical fiber with Kerr nonlinearity can be written
as

.Ĥ = ωn̂ + �n̂2, (3.7)

where .ω is the energy-level splitting for the linear Hamiltonian and .� is the Kerr
frequency associated with the optical Kerr effect. Without nonlinearity (.� = 0), an
initial coherent state .|α〉 evolves according to

.e−iωn̂|α〉 = e− 1
2 |α|2 ∑

n

(αe−iωt )n√
n! |n〉 = |αe−iωt 〉, (3.8)

which causes a global phase shift on the coherent states .|α〉. With nonlinearity,
in the interaction picture where .�n̂2 is regarded as the interaction part of the
Hamiltonian 3.7, an initial coherent state .|α〉 evolves according to

.|α, t〉 = e−i�n̂2 |α〉 = e− 1
2 |α|2 ∑

n

αn e−i�n2t

√
n! |n〉, (3.9)

which causes a nonlinear phase distortion in the initial coherent states .|α〉. Hence,
the state .|α, t〉 is non-coherent in general. For .t = 2π/� ≡ T , we have
.|α, T 〉 = |α〉, as .n2 is an integer. It implies that under the influence of the Kerr
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nonlinearity, the state .|α, t〉 experiences periodic revivals of the initial coherent
states. At the intermediate time .t = T/2, we have

.|α, T /2〉 = e− 1
2 |α|2 ∑

n

αn e−iπn2

√
n! |n〉 (3.10)

= e− 1
2 |α|2 ∑

n

αn (−1)n
2

√
n! |n〉 = | − α〉,

where in the last step we have used the relation .(−1)n
2 = (−1)n. Equation (3.10)

shows that in an optical fiber with Kerr nonlinearity, the initial coherent state
.|α〉 evolves into another coherent state .| − α〉 with an opposite amplitude at an
intermediate time .T/2. More interestingly, at one quarter of the period T , we have
.e−i�n2T/4 = e−iπn2/2 = (−i)n

2
, which equals to 1 when n is even and equals to .−i

when n is odd. With direct computation, it will yield

.|α, T /4〉 = e− 1
2 |α|2

⎛
⎝ ∑

n∈{0,2,··· }

αn

√
n! |n〉 − i

∑
n∈{1,3,··· }

αn

√
n! |n〉

⎞
⎠ (3.11)

= 1√
2

(
e− iπ

4 |α〉 + e
iπ
4 | − α〉

)
,

which shows that the initial coherent state is now converted into a superposition
of two coherent states with opposite amplitudes. When .|α| is large, they are
macroscopically distinguishable.

It turns out that the non-classical features of Schrödinger’s cat states can be
better understood by using Wigner’s function which was introduced in last chapter.
The Wigner function is a quasi-probability distribution which is non-negative
everywhere if the quantum state has a classical analog but is negative somewhere if
the quantum state possesses some non-classical features. The Wigner function can
be written as the Fourier transform of a characteristic function

.W(z) ≡ 1

π2

∫
d2ξe−i(ξz∗+ξ∗z)C(W)(ξ), (3.12)

where

.C(W)(ξ) ≡ Tr{ρei(ξa†+ξ∗a)} (3.13)

is the characteristic function of a density operator .ρ. One may denote the superpo-
sition of two coherent states .|α1〉 and .|α2〉 as .|ψ〉 = A−1/2(c1|α1〉 + c2|α2〉), with
.A = |c1|2 + |c2|2 + 2Re(c∗

1c2〈α1|α2〉) as a normalization factor. Then, the density
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operator .ρ ≡ |ψ〉〈ψ | can be written as

.ρ = A−1
(
|c1|2ρ1 + |c2|2ρ2 + c∗

1c2|α2〉〈α1| + c∗
2c1|α1〉〈α2|

)
, (3.14)

with .ρi ≡ |αi〉〈αi | being the density operator for a coherent state .|αi〉. Substitution
of Eq. (3.14) into Eq. (3.13) immediately yields

.C(W)(ξ) = A−1(|c1|2〈α1|D(iξ)|α1〉 + |c2|2〈α2|D(iξ)|α2〉 (3.15)

+ c∗
1c2〈α1|D(iξ)|α2〉 + c∗

2c1〈α2|D(iξ)|α1〉),

where .D(λ) ≡ eλa†−λ∗a is the familiar displacement operator. Thus, the Wigner
function for a superposition of two coherent states becomes

.W(z) = A−1(|c1|2W1(z) + |c2|2W2(z) + c∗
1c2W12(z) + c∗

2c1W21(z)), (3.16)

where

.Wi(z) = 2

π
e−2|z−αi |2, . (3.17a)

W12(z) = W ∗
12(z) = 2

π
e− 1

2 |α1|2− 1
2 |α2|2eα2α

∗
1−2(z∗−α∗

1 )(z−α2). (3.17b)

The first two terms in Eq. (3.16) are the Wigner functions for the constituent
coherent states .|αi〉, which are Gaussian bells centered on .αi with a width .1/

√
2

and a maximum value .2/π at .z = αi . The last two terms in Eq. (3.16) describe
the quantum interference fringes between the two Gaussian bells. In particular,
for a superposition of two coherent states with opposite amplitudes, substitution
of .c∗

1 = c2 = eiπ/4 and .α1 = −α2 = α into Eqs. (3.17a)–(3.17b) yields

.W(z) = 1

π

{
e−2|z−α|2 + e−2|z+α|2 + 2e−2|z|2 sin[4(αI x − αRp)]

}
, (3.18)

where .z ≡ x + ip and .α ≡ αR + iαI . The non-classical nature of Schrödinger’s
cat states is characterized by the negative peaks in the Wigner function, as shown in
Fig. 3.1.

We now examine in more detail the Schrödinger’s cat state as an equal-
probability superposition of coherent states with opposite amplitudes, namely, a
phase-cat state .|ψθ 〉 ≡ N−1

θ (|α〉 + eiθ | − α〉), where .N2
θ ≡ 2(1 + cos θe−2|α|2).

The annihilation operator when applying on the phase-cat state yields

.a|ψθ 〉 = α

Nθ

(|α〉 − eiθ | − α〉), a|ψπ+θ 〉 = α

Nπ+θ

(|α〉 + eiθ | − α〉). (3.19)
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Fig. 3.1 Schematic of Schrödinger’s cat state as a superposition of two coherent states with
opposite amplitudes via the Wigner’s function determined by Eq. (3.18) with .α = 2. The peak
of the quantum interference fringe is about twice as large as the constituent coherent states, and the
value pertains even when greatly increasing the distance between the constituent coherent states

Hence, the expectation values of the annihilation and creation operators for the
electromagnetic field with respect to the phase-cat state are

.〈ψθ |a|ψθ 〉 = −2iα

N2
θ

sin θe−2|α|2, 〈ψθ |a†|ψθ 〉 = 2iα∗

N2
θ

sin θe−2|α|2 , (3.20)

which vanishes for .θ = 0 or .π , namely, even- or odd-cat states. The expectation
values of the second-order moments for the annihilation and creation operators with
respect to the phase-cat state are

.〈ψθ |a2|ψθ 〉 = α2, 〈ψθ |a†2|ψθ 〉 = α∗2, . (3.21a)

〈ψθ |a†a|ψθ 〉 = |α|2N2
π+θ

N2
θ

= |α|2 e2|α|2 − cos θ

e2|α|2 + cos θ
. (3.21b)

The quadrature operators of the electromagnetic field may be defined as .q̂ ≡ (a +
a†)/

√
2 and .p̂ ≡ −i(a − a†)/

√
2, which obey the canonical commutation relation
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.[q̂, p̂] = i. Hence, the expectation values of the quadratures with respect to the
phase-cat state are

.〈ψθ |q̂|ψθ 〉 =
√
2|α| sinϑ sin θ

e2|α|2 + cos θ
, 〈ψθ |p̂|ψθ 〉 = −√

2|α| cosϑ sin θ

e2|α|2 + cos θ
, (3.22)

where .α ≡ |α|eiϑ with .ϑ being the phase of the coherent state amplitude. Then, the
expectation values of second-order moments for the quadratures with respect to the
phase-cat state become

.〈ψθ |q̂2|ψθ 〉 = 1

2
+ |α|2

(
e2|α|2 − cos θ

e2|α|2 + cos θ
+ cos 2ϑ

)
, . (3.23a)

〈ψθ |p̂2|ψθ 〉 = 1

2
+ |α|2

(
e2|α|2 − cos θ

e2|α|2 + cos θ
− cos 2ϑ

)
. (3.23b)

Hence, the variances in the quadratures with respect to the even-cat states (.θ = 0)
can be expressed as

.(�q̂)2 = 1

2
+ |α|2(tanh |α|2 + cos 2ϑ), . (3.24a)

(�p̂)2 = 1

2
+ |α|2(tanh |α|2 − cos 2ϑ), (3.24b)

whereas the variances in the quadratures with respect to the odd-cat states are
obtained by replacing .tanh |α|2 by .coth |α|2. From Eqs. (3.24a) to (3.24b), we
notice that for .ϑ = 0, we have .(�q̂)2 = 1

2 + |α|2(tanh |α|2 + 1) and .(�p̂)2 =
1
2 − |α|2e−|α|2sech|α|2 ≤ 1/2, and thus the variance in .p̂ is squeezed, whereas

for .θ = π/2, we have .(�q̂)2 = 1
2 − |α|2e−|α|2sech|α|2 ≤ 1/2 and .(�p̂)2 =

1
2 + |α|2(tanh |α|2 + 1), and thus the variance in .q̂ is squeezed. For odd-cat states,

we have .(�q̂)2 = 1
2 + |α|2(coth |α|2 + 1) and .(�p̂)2 = 1

2 + |α|2e−|α|2csch|α|2 for
.ϑ = 0 and .(�q̂)2 = 1

2 + |α|2e−|α|2csch|α|2 and .(�p̂)2 = 1
2 + |α|2(coth |α|2 + 1)

for .ϑ = π/2. Thus, both quadratures .q̂ and .p̂ do not exhibit squeezing for both
.ϑ = 0 and .π/2. Finally, for Yurke-Stoler cat states with .θ = π/2, the variances in
the quadratures are given by

.(�q̂)2 = 1

2
+ 2|α|2

(
cos2 ϑ − sin2 ϑ

e4|α|2

)
, . (3.25a)

(�p̂)2 = 1

2
+ 2|α|2

(
sin2 ϑ − cos2 ϑ

e4|α|2
)

. (3.25b)
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Hence, for .ϑ = 0, we have .(�q̂)2 = 1
2+2|α|2 and .(�p̂)2 = 1

2−2|α|2e−4|α|2 ≤ 1/2,
and thus the variance in .p̂ is squeezed, whereas for .ϑ = π/2, we have .(�q̂)2 =
1
2 − 2|α|2e−4|α|2 and .(�p̂)2 = 1

2 + 2|α|2, and thus the variance in .q̂ is squeezed.

3.3 Application to Quantum Information

In the previous sections, we have discussed the Einstein-Podolsky-Rosen (EPR)
paradox, and the Schrödinger cat states created from the superposition of well-
separated coherent states. In this section, we will discuss how Schrödinger cat
states in optical systems can be used for quantum information processing. We begin
discussing quantum teleportation using the Schrödinger cat states. The quantum
teleportation is a way of transferring a quantum state of a particle onto another
particle over large distances without knowing any information about the state in
the course of the transmission. This procedure usually requires the phenomenon
of quantum entanglement to set up a quantum teleportation channel, so that the
unknown quantum state can be disassembled into, and then later reconstructed from,
purely classical information and non-classical EPR correlations [62].

Let us assume that the sender Alice and the receiver Bob share an entangled
coherent state serve as the quantum channel for teleportation [63]

.|Cα〉 ≡ 1√
Nα

(|α〉a|α〉b − | − α〉a| − α〉b) , (3.26)

where .Nα ≡ 2 − 2 exp(−4|α|2) is a normalization factor and .| ± α〉 are coherent
states with amplitudes .±α, which are non-orthogonal to one another but with an
overlap .|〈α| − α〉|2 = exp(−4|α|2) decrease exponentially with .|α|2. For example,
the overlap .|〈α| − α〉|2 ≈ 10−7 when .|α| is as small as 2. The quantum channel
.|Cα〉 can be produced from a Schrödinger cat state .(|√2α〉 − | − √

2α〉)/√Nα by
splitting it at a lossless 50–50 beam splitter, and it can also be written as

.|Cα〉 = 1√
2

(|ψ+〉a|ψ−〉b + |ψ−〉a|ψ+〉b) , (3.27)

where .|ψ±〉 ≡ (|α〉± |−α〉)/
√
2 ± 2e−2|α|2 are the even- and odd-cat states, which

are exactly orthogonal to one another, i.e., .〈ψ−|ψ+〉 = 〈ψ+|ψ−〉 = 0. When the
amplitude .|α| is large, one may identify the two coherent states .|α〉 and .| − α〉 as
the basis states for a logical qubit, so that a qubit state with unknown amplitudes .c+
and .c− may be represented by

.|ψ〉a ≡ 1√
Na

(c+|α〉a + c−| − α〉a), (3.28)
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where .Na ≡ |c+|2 + |c−|2 + 2e−2|α|2Re(c∗−c+). Let us assume that Alice wants to
quantum teleport the qubit state .|ψ〉a to Bob by the quantum channel .|Cα〉. In order
to perfectly teleport the qubit state .|ψ〉a with a nonzero probability, Alice should
mix her part of the entangled coherent state .|Cα〉 with .|ψ〉a by using a lossless 50–
50 beam splitter. From the action of a beam splitter on coherent states, .|α〉|β〉 →
|(α + β)/

√
2〉|(α − β)/

√
2〉, Alice and Bob share a three-qubit entangled coherent

state

.|�〉a,b ≡ 1√
NaNα

[
c+

(
|√2α〉a|0〉a|α〉b − |0〉a|

√
2α〉a| − α〉b

)
(3.29)

+c−
(
|0〉a| − √

2α〉a|α〉b − | − √
2α〉a|0〉a| − α〉b

)]
,

where the first and second qubits both belong to the sender Alice and the third qubit
belongs to the receiver Bob. To complete the quantum teleportation, Alice needs to
perform a joint measurement on her two-qubit state. For example, she may measure
the number of photons in the two modes on her side. Let us denote the probability
of finding n and m photons in the two modes on Alice’s side by .P(n,m) ≡
|a〈n|a〈m|�〉a,b|2. Then by construction, only one of the two measurement outcomes
are nonzero.

Without loss of generality, one may assume that .n �= 0. According to the
principles of quantummechanics, the coherent state qubit on Bob’s side after Alice’s
measurement should be

.|ψ〉b = 1√
Nb

(c+|α〉b − (−1)nc−| − α〉b), (3.30)

where .Nb ≡ |c+|2 + |c−|2 − 2(−1)ne−2|α|2Re(c∗−c+). From Eq. (3.30), we see that
Alice’s original qubit state can be perfectly teleported to Bob when n is odd. When
n is even, Bob is required to perform an additional transformation .|α〉 → |α〉 and
.| − α〉 → −| − α〉 to perfectly teleport Alice’s original unknown qubit state. For
n odd, the probability of finding n and 0 photons in the first and second modes on
Alice’s side is

.P(n, 0) = |〈n|√2α〉|2
Nα

= e−2|α|2

2(1 − e−4|α|2)
(2|α|2)n

n! , (3.31)

which only depends on the amplitude .|α| and is independent of the qubit state .|ψ〉a
being teleported. Finally, the success probability to perfectly teleport the unknown
qubit state via the teleportation channel .|Cα〉 is

.P =
∑

n∈2N+1

(P (n, 0) + P(0, n)) = 1

2
, (3.32)



54 3 Schrödinger’s Cat States

which is independent of the amplitude .|α|.
Besides applications in quantum teleportation, the Schrödinger cat states in

optical systems can also be used to construct a discrete set of universal gates for
quantum computation which involves only linear optics and photon detection. The
universal set of quantum gates is a set of an entangling two-qubit gate assisted
by single-qubit gates, which enables any n-qubit unitary transformation to be
implemented to arbitrary accuracy for any n [64]. One such set can be constructed
from the one-qubit Hadamard gate H , the one-qubit phase shift gate .Rz(θ), and the
two-qubit controlled-Z gate .Cz. One may encode a logical qubit in the coherent
states as .|0〉L ≡ |0〉 and .|1〉L ≡ |α〉, where .|α〉 is a coherent state with a large
amplitude .α and .|0〉 is the vacuum state. The action of the Hadamard gate, the
phase shift gate, and the controlled-Z gate on the two-qubit computational state
is specified by .H |x〉L = ((−1)x |x〉L + |1 − x〉L)/

√
2, .Rz(θ)|x〉L ≡ eixθ |x〉L and

.Cz|x〉L|y〉L ≡ (−1)xy |x〉L|y〉L, respectively.
The advantage of encoding a logical qubit into coherent states is that one may

implement an entangling two-qubit gate by using only a single beam splitter. To be
specific, let us consider the following unitary beam splitter transformation .Ûab =
exp[iθ(âb̂† + â†b̂)], where .â and .b̂ are the annihilation operators for two coherent
states .|α〉 and .|β〉, respectively. Then one may show that the output state produced
by the unitary transformation .Ûab is

.Ûab|α〉a|β〉b = |cos θα + i sin θβ〉a |cos θβ + i sin θα〉b , (3.33)

where .cos2 θ and .sin2 θ are the reflectivity and transmissivity of the beam splitter,

respectively. Now, using the relation .〈β|α〉 = eβ∗α− 1
2 |β|2− 1

2 |α|2 , one may easily
obtain the overlap between the output and input states

.b〈β|a〈α|Ûab|α〉a|β〉b = e(cos θ−1)(|α|2+|β|2)+i sin θ(α∗β+β∗α). (3.34)

In particular, for a beam splitter with a nearly perfect reflectivity satisfying .θ2 �
min{|α|−2, |β|−2} � 1, the phase of the output state after the beam splitter is shifted
in an amount proportional to the coherent state amplitudes with respect to the input
state [65]

.Ûab|α〉a|β〉b ≈ eiθ(α∗β+β∗α)|α〉a|β〉b. (3.35)

Hence, we see that when either or both of the input coherent state qubits .|α〉a
and .|β〉b are in the vacuum state .|0〉, the beam splitter transformation produces no
effects on the input state. In contrast, when both of the input coherent state qubits
.|α〉a and .|β〉b are in the same coherent state .|α〉 with .|α| � 1, the beam splitter
transformation produces a sign change in the input state when the condition .θ |α|2 =
π/2 is fulfilled. Under such conditions, the unitary beam splitter transformation .Ûab

realizes the two-qubit conditional sign flip (controlled-Z) gate [64], whose action
on the two-qubit computational state is specified by .|a〉L|b〉L → (−1)ab|a〉L|b〉L,
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where .|0〉L ≡ |0〉 and .|1〉L ≡ |α〉 are the logical qubits encoded in the coherent
states.

To implement the one-qubit Hadamard gate by use of optical Schrödinger cat
states, one needs the above controlled-Z gate. When an arbitrary coherent state
qubit .|ψ〉1 ≡ (μ|0〉 + ν|α〉)/√N1 enters the input port 1 of a beam splitter with
nearly perfect reflectivity .cos2 θ ≈ 1 and .θ |α|2 = π/2, while a resource state of an
auxiliary qubit .|�+〉 enters the input port 2 of the beam splitter, the output state of
the beam splitter has the form

.|�〉1,2 = μ(|0〉1|0〉2 + |0〉1|α〉2)√
N1N+

+ ν(|α〉1|0〉2 − |α〉1|α〉2)√
N1N+

(3.36)

=
√

N+|�+〉1
2

(
μ

√
N+|�+〉2 + ν

√
N−|�−〉2√

N1N+

)

+
√

N−|�−〉1
2

(
μ

√
N+|�+〉2 − ν

√
N−|�−〉2√

N1N+

)
,

where .N1 ≡ |μ|2 + |ν|2 + 2Re(ν∗μ)e−|α|2/2, .|�±〉 ≡ (|0〉 ± |α〉)/√N± and
.N± ≡ 2 ± 2e−|α|2/2. Based on the above entangled coherent state .|�〉1,2, one may
reproduce the one-qubit Hadamard transformation by use of quantum teleportation.
According to the laws of quantum mechanics, if one performs a cat basis experiment
to test whether the output state of port 1 is the same as the auxiliary cat state .|�+〉,
the output state of port 2 should be

.|ψ〉2 = μ
√

N+|�+〉 ± ν
√

N−|�−〉√
N1N+

= μ(|0〉 + |α〉) ± v(|0〉 − |α〉)√
N1N+

, (3.37)

where the plus and minus signs are for the experimental results .|�+〉 and .|�−〉,
respectively. If the cat state .|�+〉 is obtained, Eq. (3.37) reproduces the conventional
one-qubit Hadamard transformation .|0〉 → (|0〉 + |α〉)/√2 and .|α〉 → (|0〉 −
|α〉)/√2 when .|α| � 1. In contrast, if the orthogonal cat state .|�−〉 is obtained,
one needs to perform an additional bit-flip operation .|0〉 ↔ |α〉 on the output
state .|ψ〉2 to reproduce the one-qubit Hadamard transformation. The real cat basis
measurement can be experimentally implemented by applying the displacement
operation .D(−α/2) on the output state of port 1, which results in

.D(−α

2
)|�〉1,2 =

(
μ|−α

2 〉1 + ν|α
2 〉1√

N1N+

)
|0〉2 +

(
μ|−α

2 〉1 − ν|α
2 〉1√

N1N+

)
|α〉2, (3.38)

where the displacement operation may be implemented by mixing the output state
of port 1 with an auxiliary strong coherent state .|iα/(2θ)〉 at a beam splitter with
nearly perfect reflectivity .cos2 θ ≈ 1. One may measure the photon number in the
displaced state. An even number result indicates the observation of an even cat state
.D(−α/2)|�+〉, which implies that the output state of port 1 is the same cat state
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.|�+〉, whereas an odd number result indicates the observation of an odd cat state

.D(−α/2)|�−〉, which implies that the output state of port 1 is the orthogonal cat
state .|�−〉.

To implement the bit-flip operation .|0〉 ↔ |α〉, which is equivalent to the
Pauli matrix .σx in the computational basis, one may simply apply a displacement
operation .D(−α) followed by a .π phase shift .U(π) of the coherent state amplitude,
.σx = U(π)D(−α), where the .π phase shift .U(π) ≡ eiπâ†â may be experimentally
implemented using a phase conjugate mirror, e.g., a crystal formed from a photore-
fractive material such as .BaTiO3 [66].

Finally, to implement the one-qubit phase shift gate which equals the rotation
matrix .Rz(θ) in the computational basis, one only needs two displacement opera-
tions and single photon subtraction process. For an arbitrary coherent state qubit
.|ψ〉 ≡ μ|0〉 + ν|α〉, one may first apply a displacement operation .D(γ ) on it, then
subtracts a photon from this state, and finally apply an inverse displacement .D(−γ )

on it, which yields [67]

.D(−γ )âD(γ )|ψ〉 = μγ |0〉 + ν(α + γ )|α〉. (3.39)

Equation (3.39) realizes the one-qubit phase shift gate, provided that the complex
amplitude .γ satisfies .α + γ = γ eiθ . Then the output state after the one-qubit phase
shift gate becomes

.D(−γ )âD(γ )|ψ〉 = α

2i sin θ
2

(μe− iθ
2 |0〉 + νe

iθ
2 |α〉). (3.40)

The single photon subtraction process may be experimentally implemented by using
a beam splitter with low reflectivity and an on-off photodetector [68], e.g., the
avalanche photodiode.

Exercises

3.1. Using the relation 〈β|D(ξ)|α〉 = eβ∗α− 1
2 |α|2− 1

2 |β|2eξβ∗−ξ∗α− 1
2 |ξ |2 , verify

Eqs. (3.17a) and (3.17b).

3.2. Show that the average number of photons in the quantum teleportation channel
|Cα〉 is 2|α|2(1 + e−4|α|2)/(1 − e−4|α|2).

3.3. Prove the following identity: Ry(θ) = SRx(θ)S†, where Rx(θ) ≡ e−iθσx/2

and Ry(θ) ≡ e−iθσy/2 are the rotation operators about the x̂ and ŷ axis and S is the
phase gate defined by

.S ≡
(

e−iπ/4 0
0 eiπ/4

)
.
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3.4. Show that Rx(θ) = HRz(θ)H , where H is the Hadamard gate and Rz(θ) is
the Z-rotation gate

.H ≡ 1√
2

(
1 1
1 −1

)
.

3.5. Show that any single-qubit gate, i.e., an arbitrary unitary operation U on a
single qubit, can be decomposed in terms of the Hadamard gate H and the Z-
rotation gate Rz(θ).

3.6. Show that the output state produced by the following unitary transformation
Ûab ≡ exp[i θ

2 (âb̂† + â†b̂)] is

.Ûab|α〉a|β〉b = |cos θα + i sin θβ〉a |cos θβ + i sin θα〉b ,

where â and b̂ are the annihilation operators for the two coherent states |α〉a and
|β〉b, respectively.

3.7. Show that the CNOT gate can be constructed from the controlled-Z gate and
two Hadamard gates. The action of the CNOT gate on the two-qubit computational
state is specified by |x〉|y〉 → |x〉|x ⊕ y〉, where x, y = 0, 1 and labels have been
omitted.



4Coherent States for Fermions

4.1 Graßmann Algebra

Elementary particles are divided into two fundamental classes, in accordance to the
integral or half-integral value of their spins. Bosons are particles with integral value
of spins obeying the Bose-Einstein statistics, i.e., identical particles can be in the
same states. Fermions are particles with half-integral value of spins obeying the
Fermi-Dirac statistics, i.e., identical particles are forbidden to be in the same state.
In Chap. 2, we showed that the coherent states of the bosonic fields are eigenstates
of the annihilation operators for bosons. Hence, it is natural to ask is it possible to
construct coherent states for fermionic fields?

At first sight, one may think that the fermionic coherent states may be constructed
into the same manner as the bosonic ones. However, as a result of the Pauli exclusion
principle, the creation and annihilation operators for a fermionic mode are required
to obey the anti-commutation relations .{a, a†} ≡ aa† + a†a = 1 and .{a, a} =
{a†, a†} = 0. Hence, if one were to define a fermionic coherent state .|α〉 as the
eigenstate of the fermionic annihilation operator, labeled by a complex eigenvalue
.α, i.e., .a|α〉 = α|α〉, we should have

.a1a2|α1, α2〉 = α2α1|α1, α2〉 = α1α2|α1, α2〉 = a2a1|α1, α2〉, (4.1)

which is in contradiction to the anti-commutation relations .a1a2 = −a2a1 which the
fermionic annihilation operators must obey. This means that for fermions, one needs
a new type of numbers, such that any numbers are anti-commuting to one another,
i.e., .α1α2 = −α2α2. Such a new type of numbers obeys a completely different
algebra, which is opposition to the conventional algebra which complex numbers
obey. Indeed, as was shown by Martin [69, 70] and independently by Ohnuki and
Kashiwa [71], in analogy to the coherent states for the bosonic fields, coherent states
for fermionic fields can be explicitly constructed with the aid of Graßmann numbers,
which is a type of anti-commuting numbers first studied by the mathematician
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Hermann Graßmann in his masterpiece Die Lineale Ausdehnungslehre, ein neuer
Zweig der Mathematik (The Theory of Linear Extension, a New Branch of Mathe-
matics) in 1844 [72], and were introduced in the context of a functional formulation
of quantum field theory by Julian Schwinger in 1953 [73]. In the following, we
shall discuss the properties of the Graßmann numbers and the Graßmann algebra in
details.

Graßmann numbers are individual elements of the Graßmann algebra, the
Graßmann algebra

∧
(V ) is a vector space over .R or .C spanned by products of

Graßmann variables .θi in the form .θ1 ∧ θ2 ∧ · · ·∧ θr , and the Graßmann variables .θi

are basis elements of a vector space V of dimension n. Hence, a Graßmann number
.θ can be written as a linear combinations of products of Graßmann variables .θi as

.θ =
n∑

k=0

∑

i1,i2,...,ik

αi1i2...ik θi1 ∧ θi2 ∧ . . . ∧ θik , (4.2)

where .i1 < i2 < · · · < ik , and .αi1i2...ik ∈ R or .C are totally antisymmetric in the
indices. In other words, the set of products of degree k form a subspace

∧
k(V ),

where .k ≡ deg(θi1 ∧ θi2 ∧ . . . ∧ θik ) is the number of Graßmann variables in the
product, and the Graßmann algebra is a vector space of dimension .2n, which can be
written as a direct sum

∧
(V ) = ∧0(V )⊕∧1(V )⊕· · ·⊕∧n(V ), where

∧0(V ) = R

or .C. In the following, we may omit the wedge symbol .∧ when writing products of
Graßmann variables.

By definition, the products of Graßmann variables are subjected to the
axioms: (i) the product is associative: .((θ1 · · · θi)(θi+1 · · · θj ))(θj+1 · · · θk) =
(θ1 · · · θi)((θi+1 · · · θj )(θj+1 · · · θk)) for any .i, j, k with .1 < i < j < k; (2)
the product is bilinear: .θ1 · · · θi(αη1 + βη2)θi+1 · · · θj = αθ1 · · · θiη1θi+1 · · · θj +
βθ1 · · · θiη2θi+1 · · · θj for any .i, j with .1 < i < j .

From the two axioms, it follows that the Graßmann algebra is an associative
algebra. On the other hand, an additional structure of the Graßmann algebra is that,
as opposed to the usual associative algebra, such as the multivariate polynomial
algebra, it makes a different assumption on the multiplication law: the Graßmann
variables are required to satisfy the anti-commutation relations

.θiθj + θj θi = 0, (i, j = 1, 2, . . . , n). (4.3)

Hence, an arbitrary product of an assembly of n Graßmann variables satisfies
a simple relation .θσ(1)θσ(2) . . . θσ(n) = sgn(σ )θ1θ2 . . . θn, where .sgn(σ ) is the
signature of the permutation .σ . From the anti-commutation relations, there are
several corollaries:

(1) All elements of the Graßmann algebra are affine functions, i.e., linear polyno-
mials, of a Graßmann variable .θi , after bring .θi to the leftmost or rightmost
position by use of the anti-commutation relations.
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(2) The Graßmann variables are nilpotent, i.e., .θ2i = 0 for .i = 1, 2, . . . , n. In other
words, the Graßmann variables are nonzero square-root of zero. As a result, if
.f (θ) is a function of one Graßmann variable, it has a simple expansion .f (θ) =
f0 + f1θ . For example, the exponential function of one Graßmann variable is
.eθ = 1 + θ , where all higher-order terms vanish.

In general, the expansion of a function .f (θ) of nGraßmann variables takes on the
form .f (θ) = f0 +∑i fiθi +∑i,j fij θiθj + · · ·+ f12···nθ1θ2 · · · θn. The Graßmann
function .f (θ) is even (or odd) if it contains terms with even (or odd) numbers of
Graßmann variables, i.e., .fi = fijk = · · · = 0 (or .f0 = fij = · · · = 0). By
grouping the terms in the expansion, one may express any Graßmann function as
a sum of an even and an odd Graßmann functions, .f = fe + fo. For a pair of
functions f and g, one can show that the commutator .[f, g] = [fo, go] = 2fogo, as
even Graßmann functions commute with both even and odd Graßmann functions,
and odd Graßmann functions anti-commute with each other. As the commutator
.[f, g] = 2fogo is even, it commutes with any other Graßmann function h, i.e.,
.[[f, g], h] = 0.

As Graßmann variables .θi are the basis elements of a vector space over real or
complex numbers, they commute with real or complex numbers, i.e, .θiz = zθi for
.z ∈ R or .C. A complex Graßmann variable can be written as .θ ≡ θR + iθI , where
.θR and .θI are two real Graßmann variables. Then, one may define the complex
conjugation of .θ by .θ∗ ≡ θR − iθI , which keeps the two real Graßmann variables
.θR and .θI invariant. By requiring the product .θ∗θ to be real, i.e., .(θ∗θ)∗ = θ∗θ , one
obtains

.θ∗θ = iθRθI − iθI θR = i(θI θR)∗ − i(θRθI )
∗ = (θ∗θ)∗, (4.4)

which is satisfied if .(ηξ)∗ = ξθ for two real Graßmann variables .η and .ξ . A
direct calculation would yield .(θ1θ2 · · · θn)

∗ = θ∗
n · · · θ∗

2 θ∗
1 for n complex Graßmann

variables .θi , which is similar to the Hermitian adjoint of a product of n matrices.
In the following, we discuss some fundamental notions of calculus, i.e., differen-

tiation and integration, for the Graßmann variables. Unlike conventional calculus for
real or complex numbers which involve the concept of a limit, such as the Riemann
sum, the Berezin calculus for anti-commuting Graßmann variables, invented and
developed by the Soviet Russian mathematician Felix Berezin [74], has to be
formulated in an abstract algebraic manner, as the anti-commuting nature of the
Graßmann variables makes the standard analysis constructions unavailable.

The derivative of a single Graßmann variable is defined as .∂θi/∂θj ≡ δij . Since
the Graßmann variables are anti-commuting, therefore when one takes derivatives
of their products, one has to carefully decide the order of the variables and specify
the direction in which the derivatives operate. For example, a right derivative of a
product of two Graßmann variables would yield

.
∂

∂θi

(θj θk) = θj

∂θk

∂θi

− θk

∂θj

∂θi

= δikθj − δij θk, (4.5)
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and a left derivative of a product of two Graßmann variables would yield

.
∂

∂θi

(θj θk) = ∂θj

∂θi

θk − ∂θk

∂θi

θj = δij θk − δikθj , (4.6)

Hence, the results of the left and right derivatives differ by an overall sign. In
general, for an element .θ of the Graßmann algebra generated by n Graßmann
variables .θi , one can always write .θ = c0 + θj c1, where .c0 and .c1 are independent
of .θj . Thus, the left derivative of .θ with respect to .θj is defined by .c1. Similarly,
one can write .θ = c0 + c2θj with .c0 and .c2 being independent of .θj . Then, the
right derivative of .θ with respect to .θj is defined by .c2. In the following, we use
exclusively the left derivatives, where the left derivative of a product of n Graßmann
variables is given by

.
∂

∂θi

(θ1 · · · θi−1θiθi+1 · · · θn) = (−1)i−1(θ1 · · · θi−1θi+1 · · · θn). (4.7)

In order to introduce the Berezin integral for Graßmann variables, one may first
analyze the properties of the differential of a Graßmann variable. For a Graßmann
algebra generated by n Graßmann variables, the differential operator is assumed to
have the same form as that in ordinary calculus

.d ≡
n∑

i=1

dθi

∂

∂θi

. (4.8)

Consequently, one has .d(θ1θ2) = dθ1θ2 − dθ2θ1 for a product of two Graßmann
variables. By requiring the derivative of a product of two Graßmann variables
satisfies the Leibniz rule, .d(θ1θ2) = dθ1θ2 + θ1dθ2, one immediately obtains
.θ1dθ2 = −dθ2θ1, i.e., .θ1 and .dθ2 are anti-commute. Hence, .dθ2 should be regarded
as a Graßmann variable. In other words, the differentials of the Graßmann variables
satisfy the anti-commutation relations

.{θi, dθj } = 0, {dθi, dθj } = 0, (i, j = 1, 2, · · · , n). (4.9)

In particular, .(dθi)
2 = 0 for the differentials of the Graßmann variables.

Although the Berezin integrals of functions of anti-commutating Graßmann
variables are defined via formal operations, it may be instructive to compare them
with the Riemann integrals, which have the properties (1) linearity, .

∫
(af (x) +

bg(x))dx = a
∫

f (x)dx+b
∫

g(x)dx, which yields a linear functional on the vector
space of Riemann-integrable functions, and (2) translation invariance, .

∫
f (x +

x0)dx = ∫
f (x)dx. Hence, it is natural to require that the Berezin integrals keep

these properties, i.e., a Berezin integral over a Graßmann variable should be (1) a
linear functional, .

∫
(af (θ)+bg(θ))dθ = a

∫
f (θ)dθ +b

∫
g(θ)dθ ; (2) translation

invariant, .
∫

f (θ + θ0)dθ = ∫
f (θ)dθ ; and (3) independent of the integration

variable .θ .
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For a Graßmann variable, there are two basis integrals .
∫

dθ and .
∫

dθθ . From the
assumptions of linearity and translation invariance, one obtains .

∫
dθ ′ = ∫

dθ and
.
∫

dθ ′θ ′ = ∫
dθθ + θ0

∫
dθ = ∫

dθθ , where .θ ′ ≡ θ + θ0 and .θ0 is a constant.
Consequently, one obtains .

∫
dθ = 0. From the assumption that .

∫
dθf (θ) ≡∫

dθ(c0 + c1θ) is independent of the integration variable .θ , one is forced to assume
that .

∫
dθθ is a constant. Following Berezin’s convention, one fixes the constant

by requiring .
∫

dθθ = 1. As a result, the Berezin integral .
∫

dθ is equivalent to
the derivative .∂θ for a single Graßmann variable .θ , .

∫
dθf (θ) = ∂θf (θ) = c1,

where .f (θ) ≡ c0 + c1θ . For a change of variable .η ≡ aθ , one would expect from
standard calculus that .

∫
dθf (aθ) = 1

a

∫
dθf (θ). But one may show that the Berezin

integral satisfies instead .
∫

dθf (aθ) = a
∫

dθf (θ). A direct computation yields
.
∫

dηη = ∫
dηaθ = ∫

dθθ = 1. Hence, .dθ = adη, or equivalently .dη = 1
a
dθ . In

other words, the differentials of Graßmann variables scale opposite to what appear in
standard calculus. In general, the Berezin integral for a Graßmann algebra generated
by n Graßmann variables is defined as a linear functional which has the properties

.

∫

dθi = 0,
∫

dθiθj = δjk, (i, j = 1, · · · , n). (4.10)

Hence, to integral a monomial of the Graßmann variables with respect to .θi , one may
first use the anti-commutation relations to bring .θi to the leftmost position and then
drops it. For example, the Berezin integral of a product of two Graßmann variables
would yield

.

∫

dθiθj θk = δij θk − δikθj , (4.11)

which is the same as the left derivative of the same product. Similar results held for
higher monomials.

We now consider multiple Berezin integrals for n Graßmann variables, which is
defined to be a linear functional which has the property

.

∫

dθn · · · dθ1(f0+
∑

i

fiθi+
∑

i,j

θiθj+· · ·+f12···nθ1θ2 · · · θn) ≡ f12···n, (4.12)

where we adapted to the convention that one must perform the innermost integral
first, i.e., .

∫
dθ2dθ1θ1θ2 ≡ ∫

dθ2(
∫

dθ1θ1)θ2. We now perform a change of variables
.ηi ≡ aij θj , where .aij ≡ (A)ij are elements of an invertible .n × n c-number
matrix. Then, the Jacobian J accompanied with this transformation is determined
by requiring an invariant integration result

.

∫

dηn · · · dη1f (η1, · · · , ηn) ≡ J

∫

dθn · · · dθ1f (η1, · · · , ηn), (4.13)
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where .ηi on the right-hand side are regarded as functions of .θi . From the definition
of the multiple Berezin integrals, only the product of all n Graßmann variables
would contribute to Eq. (4.13). Under the change of variables .ηi ≡ aij θj , the
product of all Graßmann variables transforms as

.η1 · · · ηn = a1σ(1) · · · anσ(n)θσ(1) · · · θσ(n) (4.14)

= sgn(σ )a1σ(1) · · · anσ(n)θ1 · · · θn

= det(A)θ1 · · · θn,

which scales opposite to what appears in standard calculus. Hence, we obtain .J =
(detA)−1, and the formula for the change of variables

.

∫

dθn · · · dθ1f (η1, · · · , ηn) = detA
∫

dθn · · · dθ1f (θ1, · · · , θn), (4.15)

where the Graßmann differentials transform as

.dηn · · · dη1 = (detA)−1dθn · · · dθ1. (4.16)

Finally, the multiple Berezin integrals over a pair of mutually conjugate Graßmann
variables .θ and .θ∗ are treated as integrating over independent ones

.

∫

dθdθ∗e−aθθ∗ =
∫

dθdθ∗(1 − aθθ∗) = a

∫

dθdθ∗θ∗θ = a. (4.17)

As an example, we may consider a Gaussian Berezin integral over two sets of
Graßmann variables .{θi, θ

∗
i } (.i = 1, · · · , n), in analogue to the complex Gaussian

integrals. In particular, we consider the following integral

.Z(M) ≡
∫

dθndθ∗
n · · · dθ1dθ∗

1 exp

⎛

⎝
n∑

i,j=1

θ∗
i Mij θj

⎞

⎠ . (4.18)

According to the properties of the multiple Berezin integrals, only terms that are
proportional to .θ∗

1 θ1 · · · θ∗
n θn in the expansion of the integrand would contribute to

Eq. (7.10). As products of an even number of Graßmann variables commute with
each other, the integrand can thus be expanded as

. exp

⎛

⎝
n∑

i,j=1

θ∗
i Mij θj

⎞

⎠ =
n∏

i=1

exp

⎛

⎝
n∑

j=1

θ∗
i Mij θj

⎞

⎠ =
n∏

i=1

⎛

⎝1 + θ∗
i

n∑

j=1

Mij θj

⎞

⎠ .
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Since only the terms that are proportional to .θ∗
i in each factor would contribute to

the integral, it remains to integrate

.

n∏

i=1

θ∗
i

⎛

⎝
n∑

j=1

Mij θj

⎞

⎠ =
∑

σ∈Sn

M1σ(1) · · ·Mnσ(n)θ
∗
1 θσ(1) · · · θ∗

n θσ(n) (4.19)

=
∑

σ∈Sn

sgn(σ )M1σ(1) · · · Mnσ(n)θ
∗
1 θ1 · · · θ∗

n θn,

where we have used the relation .θσ(1)θσ(2) . . . θσ(n) = sgn(σ )θ1θ2 . . . θn, with
.sgn(σ ) being the signature of the permutation .σ . From Eq. (4.19), one recognizes
that the coefficient of the product .θ∗

1 θ1 · · · θ∗
n θn is exactly the determinant of the

matrix M . Hence, one immediately obtains

.Z(M) ≡
∫

dθndθ∗
n · · · dθ1dθ∗

1 exp

⎛

⎝
n∑

i,j=1

θ∗
i Mij θj

⎞

⎠ = detM. (4.20)

In the above derivation, as the knowledge that .θi and .θ∗
i are mutually conjugate has

not been used, we actually proved a slightly more general result

.

∫

dθndηn · · · dθ1dη1 exp

⎛

⎝
n∑

i,j=1

ηiMij θj

⎞

⎠ = detM, (4.21)

where .θi and .ηi are two set of independent Graßmann variables. As another
example, we may evaluate the general Gaussian Berezin integral

.Z(η, η∗) ≡
∫

dθndθ∗
n · · · dθ1dθ∗

1 exp

⎡

⎣
n∑

i,j=1

(θ∗
i Mij θj + η∗

i θi + θ∗
i ηi)

⎤

⎦ ,

(4.22)

where .ηi and .η∗
i are another two sets of Graßmann variables. After the change of

variables .θ ′
i ≡ θi +∑n

j=1 
ijηj and .θ ′∗
i = θ∗

i +∑n
j=1 η∗

j
ji , we obtain

.Z(η, η∗) =
∫

dθ ′
ndθ ′∗

n · · · dθ ′
1dθ ′∗

1 exp

⎛

⎝
n∑

i,j=1

θ ′∗
i Mij θ

′
j − η∗

i 
ij ηj

⎞

⎠ (4.23)

= detM exp

⎛

⎝−
n∑

i,j=1

η∗
i 
ij ηj

⎞

⎠ ,
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where .
 ≡ M−1 is the inverse of the matrixM . As a final example, we may evaluate
the Pfaffian of a skew-symmetric .2n × 2n matrix A, i.e., .Aij = −Aji , by using the
Berezin integral

.Pf(A) ≡
∫

dθ2n · · · dθ1 exp

⎛

⎝1

2

2n∑

i,j=1

θiAij θj

⎞

⎠ . (4.24)

Interestingly, the Pfaffian of a skew-symmetric matrix is closely related to its
determinant. To see this, let us consider a Gaussian Berezin integral over two sets of
Graßmann variables .{ηi, ξi} and perform the change of variables .ηi = 1√

2
(θ ′

i + iθ ′′
i )

and .ξi = 1√
2
(θ ′

i − iθ ′′
i ), then we obtain

.

∫

dηdξ exp

⎛

⎝
2n∑

i,j=1

ηiAij ξj

⎞

⎠ = J

∫

dθ ′dθ ′′ exp

⎡

⎣1

2

2n∑

i,j=1

(θ ′
iAij θ

′
j + θ ′′

i Aij θ
′′
j )

⎤

⎦ ,

where .dηdξ ≡ dη2ndξ2n · · · dη1dξ1, .dθ ′dθ ′′ ≡ dθ ′
2ndθ ′′

2n · · · dθ ′
1dθ ′′

1 and .J = i2n.
According to the properties of Graßmann variables, we have

.dθ ′dθ ′′ = (−1)n(2n−1)dθ ′
2n · · · dθ ′

1dθ ′′
2n · · · dθ ′′

1 . (4.25)

As a consequence, we obtain

.

∫

dηdξ exp

⎛

⎝
2n∑

i,j=1

ηiAij ξj

⎞

⎠ =
⎡

⎣
∫

dθ2n · · · dθ1 exp

⎛

⎝1

2

2n∑

i,j=1

θiAij θj

⎞

⎠

⎤

⎦

2

,

which implies that the Pfaffian of a skew-symmetric matrix is a square root of its
determinant: .detA = Pf(A)2.

4.2 Coherent States for Fermions

In the last section, we discussed some basic properties of the Graßmann numbers
and the Graßmann algebra. In this section, we will introduce the fermionic coherent
states based on the Graßmann algebra. Unlike the familiar bosonic coherent states
which are defined in the bosonic Fock space, the fermionic coherent states, which
appear in the functional formulation of quantum field theory, are not defined in the
fermionic Fock space but in a super Hilbert space over the Graßmann algebra, i.e.,
an enlarged Hilbert space spanned by linear combinations of vectors with Graßmann
number coefficients.
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To begin with, let us introduce the fermionic coherent states for a single fermion,
which is defined as the displaced vacuum state in analogous to the bosonic coherent
states [75]

.|θ〉 ≡ exp(a†θ − θ∗a)|0〉 ≡ D(θ)|0〉, (4.26)

where a and .a† are the fermionic annihilation and creation operators which satisfy
the anti-commutation relations .{a, a†} = 1 and .{a, a} = {a†, a†} = 0, .θ and .θ∗ are a
pair of mutually conjugated Graßmann variables which satisfy the anti-commutation
relations .{θ, θ∗} = {θ, θ} = {θ∗, θ∗} = 0, and .|0〉 is the vacuum state which satisfies
.a|0〉 = 0.

For definiteness, any Graßmann variables are assumed to be anti-commute with
the fermionic operators .{θ, a} = {θ, a†} = 0 and are assumed to commute with
the vacuum states .θ |0〉 = |0〉θ and .θ〈0| = 〈0|θ . The fermionic coherent states are
normalized to unity, as the displacement operator .D(θ) is a unitary operator in the
super Hilbert space, which satisfies the translation properties .D†(θ)aD(θ) = a + θ

and .D†(θ)a†D(θ) = a† + θ∗ in analogous to those for bosonic coherent states.
From now on, the fermionic coherent state .|θ〉 is defined as an eigenstate of the

fermionic annihilation operator

.a|θ〉 ≡ aD(θ)|0〉 = D(θ)D†(θ)aD(θ)|0〉 (4.27)

= D(θ)(a + θ)|0〉 = D(θ)θ |0〉 = θD(θ)|0〉 = θ |θ〉,

where we have used the fact that .[D(θ), θ ] = 0. One may apply the Baker-

Campbell-Hausdorff formula .eAeB = eA+Be
1
2 [A,B] to the case .A = a†θ − θ∗a and

.B = a†η−η∗a and obtains .D(θ)D(η) = D(θ +η)e
1
2 (η∗θ−θ∗η). From the definition

of the displacement operator, Eq. (4.26), we can write the fermionic coherent states
as .|θ〉 ≡ D(θ)|0〉 = (1+a†θ − 1

2θ
∗θ)|0〉 and, similarly, the adjoint of the fermionic

coherent states as .〈θ | ≡ 〈0|D†(θ) = 〈0|1 + θ∗a − 1
2θ

∗θ). Hence, the inner product
of two fermionic coherent states becomes

.〈η|θ〉 = eη∗θ− 1
2 (η

∗η+θ∗θ), (4.28)

which yields .〈θ |η〉〈η|θ〉 = e−(θ∗−η∗)(θ−η) = 1 − (θ∗ − η∗)(θ − η). Using the
properties of the Berezin integrals, one may readily show that the fermionic coherent
states .|θ〉 are over-complete in the super Hilbert space, i.e., one may expand any
fermionic state .|ψ〉 ≡ (c1 + c2a

†)|0〉 with .c1, c2 ∈ C in terms of the fermionic
coherent states .|θ〉 as

.

∫

dθ∗dθψ(θ)|θ〉 ≡
∫

dθ∗dθ〈θ |ψ〉|θ〉 (4.29)

=
∫

dθ∗dθ
(
c1 + c2θ

∗ − c1

2
θ∗θ

)
|θ〉 = (c1 + c2a

†)|0〉 = |ψ〉.
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It shows that the fermionic coherent states .|θ〉, similar to their bosonic counterparts,
resolve the identity, .

∫
dθ∗dθ |θ〉〈θ | = I , and thus the function .ψ(θ) ≡ 〈θ |ψ〉

provides a continuous representation of the super Hilbert space. However, it should
be underscored that the fermionic coherent states are over-complete in the sense that
they are not linearly independent to each other. For example, we have the identity
.
∫

d∗θdθθ |θ〉 = 0.
Similar to the single mode case, the fermionic coherent states for multi fermionic

modes can be also defined as the displaced vacuum state [75]

.|θ〉 = exp

{
n∑

i=1

(
a
†
i θi − θ∗

i ai

)
}

|0〉 ≡ D(θ)|0〉, (4.30)

where .θ ≡ {θ1, · · · , θn} is a set of Graßmann variables, .|0〉 ≡ |0 · · · 0〉 is the
multimodes vacuum state, .a

†
i and .ai are the creation and annihilation operators

which satisfy the anti-commutation relations: .{ai, a
†
j } = δij , .{ai, aj } = {a†i , a†j } =

0, and .ai |0〉 = 0. The Graßmann variables and their complex conjugation satisfy
the anti-commutation relations: .{θi, θj } = {θ∗

i , θj } = {θ∗
i , θ∗

j } = 0. The Graßmann
variables are assumed to be anti-commute with the fermionic operators, .{θi, aj } =
{θi, a

†
j } = 0, and commute with the vacuum state, .θi |0〉 = |0〉θi .

As the operators .a
†
i θi and .θ∗

j aj commute for .i �= j , one may write the
displacement operator as a product

.D(θ) ≡ exp

{
n∑

i=1

(
a
†
i θi − θ∗

i ai

)
}

=
n∏

i=1

exp
(
a
†
i θi − θ∗

i ai

)
(4.31)

=
n∏

i=1

[

1 + a
†
i θi − θ∗

i ai + (a
†
i ai − 1

2
)θ∗

i θi

]

.

Hence, one may calculate the displaced annihilation operators as

.D†(θ)ajD(θ) ≡
n∏

i=1

exp
(
θ∗
i ai − a

†
i θi

)
aj

n∏

k=1

exp
(
a
†
k θk − θ∗

k ak

)
(4.32)

= exp
(
θ∗
j aj − a

†
j θj

)
aj exp

(
a
†
j θj − θ∗

j aj

)
.

= aj + θj ,

and similarly, the displaced creation operators, .D†(θ)a
†
j D(θ) = a

†
j + θ∗

j .
Here, the coherent state representation for a general fermionic state .|ψ〉 ≡
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∑
n c(n1 · · · nk)a

†
n1 · · · a†nk

|0〉 has the form

.〈θ |ψ〉 =
∑

n

c(n1 · · · nk)〈0|D†(θ)a†n1 · · · a†nk
|0〉 (4.33)

=
∑

n

c(n1 · · · nk)〈0|D†(θ)a†n1D(θ) · · · D†(θ)a†nk
D(θ)D†(θ)|0〉

=
∑

n

c(n1 · · · nk)〈0|(a†n1 + θ∗
n1

) · · · (a†nk
+ θ∗

nk
)D†(θ)|0〉

=
∑

n

c(n1 · · · nk)θ
∗
n1

· · · θ∗
nk

〈0|D†(θ)|0〉

=
∑

n

c(n1 · · · nk)θ
∗
n1

· · · θ∗
nk
exp

{

−
n∑

i=1

1

2
θ∗
i θi

}

,

where .n ≡ {n1, n2, · · · , nk} lists a set of occupied modes. Although the dis-
placement operator is defined in a symmetric ordered form, it is sometimes useful
to consider the normally and anti-normally ordered forms. Applying the Baker-

Campbell-Hausdorff formula .eAeB = eA+Be
1
2 [A,B] to the case .A = ∑

i a
†
i θi and

.B = −∑i θ∗
i ai , one obtains the normally ordered displacement operator

.DN(θ) ≡ exp

{
∑

i

a
†
i θi

}

exp

{

−
∑

i

θ∗
i ai

}

(4.34)

= D(θ) exp

{
1

2

∑

i

θ∗
i θi

}

,

and the anti-normally ordered displacement operator

.DA(θ) ≡ exp

{

−
∑

i

θ∗
i ai

}

exp

{
∑

i

a
†
i θi

}

(4.35)

= D(θ) exp

{

−1

2

∑

i

θ∗
i θi

}

.

Applying the Baker-Campbell-Hausdorff formula again, one finds the multiplication
formula for the fermion displacement operators

.D(θ)D(η) = D(θ + η) exp

{
1

2

∑

i

(η∗
i θi − θ∗

i ηi)

}

, (4.36)



70 4 Coherent States for Fermions

where .θ and .η are two sets of Graßmann variables. Equation (4.36) shows that a
product of two displacement operators always gives another displacement operator
multiplied by a phase factor. By use of the displacement relation (4.32), one may
show that the fermionic coherent state .|θ〉 is an eigenstate of all annihilation
operators .ai

.ai |θ〉 = D(θ)D†(θ)aiD(θ)|0〉 = D(θ)(ai + θi)|0〉 (4.37)

= D(θ)θi |0〉 = θiD(θ)|0〉 = θi |θ〉,

where we have used the relation .D(θ)θi = θiD(θ). By use of the product
formula (4.31), one may write the fermionic coherent state as

.|θ〉 ≡ D(θ)|0〉 =
n∏

i=1

[

1 + a
†
i θi − θ∗

i ai + (a
†
i ai − 1

2
)θ∗

i θi

]

|0〉 (4.38)

=
n∏

i=1

(

1 + a
†
i θi − 1

2
θ∗
i θi

)

|0〉 = exp

{
n∑

i=1

(

a
†
i θi − 1

2
θ∗
i θi

)}

|0〉.

Similarly, the adjoint of the coherent state is

.〈θ | ≡ 〈0|D†(θ) = 〈0|
n∏

i=1

(

1 + θ∗
i ai − 1

2
θ∗
i θi

)

(4.39)

= 〈0| exp
{

n∑

i=1

(

θ∗
i ai − 1

2
θ∗
i θi

)}

,

which satisfies the relation .〈θ |a†i = 〈θ |θ∗
i . A direct computation yields the inner

product between two arbitrary fermionic coherent states

.〈θ |η〉 ≡ 〈0|D†(θ)D(η)|0〉 = 〈0|D(−θ)D(η)|0〉 (4.40)

= 〈0|D(−θ + η)|0〉 exp
{
1

2

n∑

i=1

(θ∗
i ηi − η∗

i θi)

}

= exp

{

−1

2

n∑

i=1

(η∗
i − θ∗

i )(ηi − θi)

}

exp

{
1

2

n∑

i=1

(θ∗
i ηi − η∗

i θi)

}

= exp

{
n∑

i=1

[

θ∗
i ηi − 1

2

(
θ∗
i θi + η∗

i ηi

)
]}

,
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and hence

.〈θ |η〉〈η|θ〉 = exp

{

−
n∑

i=1

(η∗
i − θ∗

i )(ηi − θi)

}

(4.41)

=
n∏

i=1

[
1 − (η∗

i − θ∗
i )(ηi − θi)

]
.

In the following, we derive some useful integral formulas based on properties of the
Berezin integrals. From the formula for the Gaussian Berezin integral, Eq. (4.23),
one obtains

.

∫

d2θ |θ〉〈θ |η〉 = e
1
2 ηiη

∗
i

∫

d2θ exp

{
n∑

i=1

(
θiθ

∗
i + a

†
i θi + θ∗

i ηi

)
}

|0〉 (4.42)

= exp

{
n∑

i=1

(

a
†
i ηi + 1

2
ηiη

∗
i

)}

|0〉 = |η〉,

where .d2θ ≡ ∏n
i=1 d2θi and .d2θi ≡ dθ∗

i dθi . It follows that the identity operator
may be written as a Berezin integral in the coherent state representation

.I =
∫

d2θ |θ〉〈θ |. (4.43)

Interestingly, the trace of an arbitrary operator G, i.e., .TrG ≡ ∑
n〈n|G|n〉 with

.|n〉 ≡ |n1〉 ⊗ |n2〉 ⊗ · · · ⊗ |nn〉, can also be written as a Berezin integral in the
coherent state representation. A direct computation yields

.

∫

d2θ〈−θ |G|θ〉 =
∫

d2θe−θ∗θ 〈0|e−∑i θ∗
i ai Ge

∑
j a

†
j θj |0〉 (4.44)

=
∫

d2θ(1 − θ∗θ)〈0|
∏

i

(1 + aiθ
∗
i )G

∏

j

(1 − θj a
†
j )|0〉

=
∫

d2θθθ∗∑

n

〈n|G|n〉 = TrG.

As an example, the trace of the coherent state dyadic .|θ〉〈η| has the form

.Tr(|θ〉〈η|) =
∫

d2β〈−β|θ〉〈η|β〉 =
∫

d2β〈η|β〉〈−β|θ〉 (4.45)

=
∫

d2β〈η|β〉〈β| − θ〉 = 〈η| − θ〉 = 〈−η|θ〉.
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and similarly

.Tr(G|θ〉〈η|) = 〈−η|G|θ〉. (4.46)

As another application of the Berezin integrals, one may verify that the Dirac delta
function may be expressed as

.δ(θ − η) ≡
∫

d2α exp

[
n∑

i=1

(
αi(θ

∗
i − η∗

i ) − (θi − ηi)α
∗
i

)
]

(4.47)

=
n∏

i=1

(θi − ηi)(θ
∗
i − η∗

i ),

which satisfies the relation .δ(θ − η) = δ(η − θ). From the above result, one may
introduce the Fourier transform of an arbitrary function .f (θ) as

.f̃ (η) ≡
∫

d2θeηθ∗−θη∗
f (θ), (4.48)

and express the inverse Fourier transform of .f̃ (η) as

.f (θ) =
∫

d2ηeθη∗−ηθ∗
f̃ (η). (4.49)

As a result of Eq. (4.47), one may also derive the fermionic analogue of the
convolution theorem

.

∫

d2θeηθ∗−θη∗
f (θ)g(θ) (4.50)

=
∫

d2θeηθ∗−θη∗
f (θ)

∫

d2β

∫

d2αeα(β∗−θ∗)−(β−θ)α∗
g(β)

=
∫

d2α

∫

d2θe(η−α)θ∗−θ(η∗−α∗)f (θ)

∫

d2βeαβ∗−βα∗
g(β)

=
∫

d2αf (η − α)g̃(β).

From the normally ordered form of the displacement operator, Eq. (4.34), one may
express the Dirac delta function via the displacement operator as

.

∫

d2η〈η|D(θ)|η〉 =
∫

d2η〈η|e
∑

i a
†
i θi e−∑i θ∗

i ai |η〉e− 1
2 θ∗θ (4.51)

=
∫

d2ηe
∑

i (η
∗
i θi−θ∗

i ηi )e− 1
2 θ∗θ = δ(θ)e− 1

2 θ∗θ ,
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and similarly

.

∫

d2η〈η|D(α)D(−β)|η〉 = δ(α − β)eα∗β− 1
2α∗α− 1

2β∗β . (4.52)

It follows that one may express an arbitrary operator G as a Berezin integral over
the displacement operator as

.G ≡
∫

d2θg(θ)D(−θ), (4.53)

where .g(θ) is a weight function that can be expressed as a Berezin integral over the
operator G and the displacement operator

.

∫

d2η〈η|GD(α)|η〉 =
∫

d2η

∫

d2θg(θ)〈η|D(−θ)D(α)|η〉 (4.54)

=
∫

d2θg(θ)δ(α − θ)eθ∗α− 1
2 θ∗θ− 1

2α∗α = g(α).

Hence, the final expression of an arbitrary operator G in the fermionic coherent state
representation is

.G =
∫

d2θ

∫

d2η〈η|GD(θ)|η〉D(−θ). (4.55)

Using the trace formula, Eq. (4.46), one may interpret the Dirac delta function .δ(θ −
η) as a trace identity as

.δ(θ − η) =
∫

d2αeαθ∗−θα∗
eηα∗−αη∗

(4.56)

=
∫

d2αeηα∗−αη∗〈α|DN(θ)|α〉

=
∫

d2αeηα∗−αη∗
Tr[DN(θ)|α〉〈−α|]

= Tr[DN(θ)EA(η)],

where .EA(η) is the Fourier transform of the coherent state dyadic .|α〉〈−α|. As one
may verify in the exercises, the displacement operators are complete, and hence, one
may expand an arbitrary operator G in terms of the normally order displacement
operator .DN(θ) as

.G =
∫

d2θg(θ)DN(θ), (4.57)
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where the function .g(θ) may be solved by

.Tr[GEA(η)] =
∫

d2θg(θ)Tr[DN(θ)EA(η)] (4.58)

=
∫

d2θg(θ)δ(θ − η) = g(η).

Hence, an arbitrary operator G can be expanded as

.G =
∫

d2θTr[GEA(θ)]DN(θ). (4.59)

Using the properties of the Berezin integrals, one may easily express .EA(η), i.e.,
the Fourier transform of the coherent state dyadic .|α〉〈−α| as

.EA(η) ≡
∫

d2αeηα∗−αη∗ |α〉〈−α| (4.60)

=|0〉〈0| −
n∏

i=1

(a
†
i + η∗

i )|0〉〈0|(ai + ηi).

One may show that the operators .EA(η) are complete. For simplicity, here we only
verify the case of a single mode. The key is that the operators .|0〉〈0|, .|0〉〈0|a,
.a†|0〉〈0|, and .a†|0〉〈0|a form a complete set of operators and can be expressed as
Berezin integrals over the operators .EA(η)

.

∫

d2ηEA(η) = |0〉〈0|,
∫

d2η(−η)EA(η) = |0〉〈0|a, (4.61)

∫

d2η(−η∗)EA(η) = a†|0〉〈0|,
∫

d2η(1 − ηη∗)EA(η) = a†|0〉〈0|a.

One may verify the multimode case similarly. Hence, an arbitrary operator G may
be expanded in terms of .EA(η) as

.G =
∫

d2ηg(η)EA(η), (4.62)

where the function .g(η) may be solved by

.Tr[DN(θ)G] =
∫

d2ηg(η)Tr[DN(θ)EA(η)] (4.63)

=
∫

d2ηg(η)δ(θ − η) = g(θ).
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Hence, any arbitrary operator G may be expanded as

.G =
∫

d2ηTr[DN(θ)G]EA(η). (4.64)

In the following, it is convenient to introduce a characteristic function .χ(η) for a
system described by a density .ρ

.χ(η) ≡ Tr

[

exp

(
∑

n

(ηna
†
n − anη

∗
n)

)

ρ

]

(4.65)

= Tr

[
∏

n

(1 + ηna
†
n − anη

∗
n + η∗

nηn(a
†
nan − 1

2
))ρ

]

.

Similarly, one may define the normally ordered characteristic function as

.χN(η) ≡ Tr

[

exp

(
∑

m

ηma†m

)

exp

(

−
∑

n

anη
∗
n

)

ρ

]

(4.66)

= Tr

[
∏

n

(1 + ηna
†
n − anη

∗
n + η∗

nηna
†
nan)ρ

]

,

and the anti-normally characteristic function as

.χA(η) ≡ Tr

[

exp

(

−
∑

n

anη
∗
n

)

exp

(
∑

m

ηma†m

)

ρ

]

(4.67)

= Tr

[
∏

n

(1 + ηna
†
n − anη

∗
n + η∗

nηn(a
†
nan − 1))ρ

]

.

One may readily show that the anti-normally characteristic function .χA(η) is the
Fourier transform of the matrix element .〈θ |ρ| − θ〉

.χA(η) ≡ Tr

[

exp

(

−
∑

n

θnη
∗
n

)∫

d2θ |θ〉〈θ | exp
(
∑

m

ηmθ∗
m

)

ρ

]

(4.68)

=
∫

d2θ exp

(
∑

n

(ηnθ
∗
n − θnη

∗
n)

)

〈θ |ρ| − θ〉.
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A direct computation yields

.ρ =
∫

d2ηTr[DN(θ)ρ]EA(η) (4.69)

=
∫

d2ηχ(−η)EA(η) =
∫

d2ηχ(η)EA(−η).

which shows that the characteristic function .χ(η) is the weight function for the
density operator .ρ in the above expansion. It turns out that one may define a quasi-
probability distribution .P(θ) as the Fourier transform of the characteristic function
.χN(η)

.P(θ) ≡
∫

d2η exp

(
∑

n

(θnη
∗
n − ηnθ

∗
n )

)

χN(η), (4.70)

and show that the quasi-probability distribution .P(θ) is the weight function for the
density operator .ρ in the expansion

.ρ =
∫

d2θP(θ)|θ〉〈−θ |. (4.71)

Indeed, one may directly verify that

.Tr
[
e
∑

m ηma
†
me−∑n anη∗

nρ
]

(4.72)

=
∫

d2αd2θeθ(α∗−η∗)−(α−η)θ∗
χ(α)

=
∫

d2αδ(α − η)χN(α) = χN(η).

Equation (4.71) shows that the quasi-probability distribution .P(θ) is the fermionic
analogue of the Glauber-Sudarshan P -representation in quantum optics. As an
immediately consequence of Eq. (4.71), one may show that the fermionic quasi-
probability distribution .P(θ) is normalized to unity

.

∫

d2θP(θ) = Trρ = 1. (4.73)

Similarly, one may define another quasi-probability distribution .Q(θ) using the anti-
normally characteristic function .χA(η)

.Q(θ) ≡
∫

d2η exp

(
∑

n

(θnη
∗
n − ηnθ

∗
n )

)

χA(η). (4.74)
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Substitution of Eq. (4.68) into Eq. (4.74) immediately yields

.Q(θ) =
∫

d2αd2ηeη(α∗−θ∗)−(α−θ)η∗〈α|ρ| − α〉 (4.75)

=
∫

d2αδ(α − θ)〈α|ρ| − α〉 = 〈θ |ρ| − θ〉.

Hence, the quasi-probability distribution .Q(θ) is the fermionic analogue of the
HusimiQ-representation in quantum optics. Similarly, one may show that the quasi-
probability distribution .Q(θ) is normalized to unity

.

∫

d2θQ(θ) =
∫

d2θ〈θ |ρ| − θ〉 = Trρ = 1. (4.76)

As an application, one may use the fermionic P -representation to evaluate the mean
values of normally ordered products of monomials such as .a

†mi

i a
ni

i . For example,
for the case of a single mode, one may obtain

.Tr
(
a†manρ

)
=
∫

d2θTr
(
a†manP (θ)|θ〉〈−θ |

)
(4.77)

=
∫

d2θ〈θ |a†man|θ〉P(θ) =
∫

d2θθ∗mθnP (θ),

where the cases of multimodes are left for the readers.
As an important application, one may also use the P -representation for fermionic

fields to evaluate normally ordered correlation functions. Similar to the case of
a bosonic field, one may denote the positive-frequency part of a fermionic field,
regarded as a function of a space-time variable x as .ψ(x). Then, the nth-order
correlation function can be defined as

.G(n)(x1, · · · , xn, yn, · · · , y1) ≡ Tr[ψ†(x1) · · · ψ†(xn)ψ(yn) · · · ψ(y1)ρ].
(4.78)

When the positive-frequency part of the fermionic field is expanded in terms of its
mode functions as .ψ(x) = ∑

k akφk(x), one could simply introduce the fermionic
coherent states .|α〉 via .ψ(x)|α〉 = ϕ(x)|α〉, where .ϕ(x) = ∑

k αkφk(x) is the
corresponding Graßmann field and .α = {αk} is an assembly of Graßmann variables.
Then one may use the P -representation to express the nth correlation function as a
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Berezin integral

.G(n)(x1, · · · , xn, yn, · · · , y1) ≡ Tr[ψ†(x1) · · · ψ†(xn)ψ(yn) · · · ψ(y1)ρ]
(4.79)

=
∫

d2α〈α|ψ†(x1) · · · ψ†(xn)ψ(y1) · · · ψ(yn)P (α)|α〉.

=
∫

d2αϕ∗(x1) · · · ϕ∗(xn)ϕ(yn) · · · ϕ(y1)P (α).

Exercises

4.1. Prove the Baker-Campbell-Hausdorff formula for Graßmann variables, eθ+η =
eθ eηe− 1

2 [θ,η], where θ and η are two arbitrary Graßmann variables.

4.2. Verify the result (θ1θ2 · · · θn)
∗ = θ∗

n · · · θ∗
2 θ∗

1 for a product of n complex
Graßmann variables.

4.3. Show that the Dirac delta function for a single Graßmann variable has the form
δ(θ − θ ′) = θ − θ ′, which satisfies

.

∫

dηδ(η − η′)f (η) = f (η′).

4.4. Verify that the Dirac delta function for a single Graßmann variable has the
following integral representation

.δ(η − η′) =
∫

dξeξ(η−η′).

4.5. Verify that the Jacobian associated with the change of variables ηi = 1√
2
(θ ′

i +
iθ ′′

i ) and ξi = 1√
2
(θ ′

i − iθ ′′
i ) is J = i2n.

4.6. Verify that dθ ′dθ ′′ = (−1)n(2n−1)dθ ′
2n · · · dθ ′

1dθ ′′
2n · · · dθ ′′

1 .

4.7. By using the Berezin integral, Eq. (4.24), show that the Pfaffian of the skew-
symmetric 2n × 2n matrix A can be evaluated by the formula Pf(A) = ∑

α∈� Aα ,
where � is the set of all partitions of {1, 2, · · · , 2n} into pairs without order and an
element α ∈ � is written as α = {(i1, j1), (i2, j2), · · · , (in, jn)} subjected to the
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constraints ik < jk and i1 < i2 < · · · < in. Let

.πα =
[
1 2 3 4 · · · 2n − 1 2n
i1 j1 i2 j2 · · · in jn

]

be the corresponding permutation. Then, the formula for the Pfaffian can be
explicitly written as

.Pf(A) =
∑

α∈�

sgn(πα)ai1j1ai2j2 · · · ainjn .

4.8. Prove that D(θ) ≡ exp(a†θ − θ∗a) = 1 + a†θ − θ∗a + (a†a − 1
2 )θ

∗θ and
show that [D(θ), θ ] = 0.

4.9. Verify the relations D†(θ)aD(θ) = a + θ and D†(θ)a†D(θ) = a† + θ∗.

4.10. Show that [a†θ − θ∗a, a†η − η∗a] = η∗θ − ηθ∗.

4.11. Verify Eq. (4.29).

4.12. Show that the operators I , a, a†, and 1
2 − a†a can be written as an Berezin

integral over the displacement operators as

.I =
∫

d2θθθ∗D(θ),

a =
∫

d2θ(−θ)D(θ),

a† =
∫

d2θθ∗D(θ),

1

2
− a†a =

∫

d2θD(θ),

which implies the completeness of the displacement operators.

4.13. Verify Eq. (4.36).

4.14. Verify that

.〈0|D(θ)|0〉 =
n∏

i=1

(

1 − 1

2
θ∗
i θi

)

= exp

{

−1

2

n∑

i=1

θ∗
i θi

}

.

4.15. Verify the relation
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.

∫

d2θδ(θ − η)f (θ) = f (η),

where f (θ) is an arbitrary function of an assembly of Graßmann variables θ ≡
{θ1, · · · , θn}.

4.16. Verify the following two forms of Parseval’s relations

.

∫

d2ηf̃ (η)g̃∗(η) =
∫

d2θf (θ)g∗(θ),

and

.

∫

d2ηf̃ (η)g̃(−η) =
∫

d2θf (θ)g(θ).

4.17. Verify Eq. (4.44).

4.18. Verity that EA(η) = |0〉〈0| −∏n
i=1(a

†
i + η∗

i )|0〉〈0|(ai + ηi).

4.19. Prove that the fermionic P - and Q-representations are related by

.P(θ) =
∫ ∏

n

(−d2ηn)e
−(θ−η)(θ∗−η∗)Q(η).

4.20. Show that for the density operator ρ ≡ |0 · · · 0〉〈0 · · · 0| which represents the
multimodes vacuum state, the normally ordered characteristic function is χN(θ) =
1, the weight function of the P-representation is P(θ) = δ(θ), and the quasi-
probability distribution Q(θ) = exp(−θ∗θ).

4.21. Show that for the most general physical two-mode fermionic density operator

.ρ = r|00〉〈00| + u|10〉〈10| + v|01〉〈01| + w|10〉〈01||
+ w∗|01〉〈10 + x|00〉〈11| + x∗|11〉〈00| + t |11〉〈11|

in which |10〉 ≡ a
†
1 |00〉, |11〉 ≡ a

†
2a

†
1 |00〉, etc., the normally ordered characteristic

function χN(θ) is

.χN(θ) = 1 + wθ∗
1 θ2 + w∗θ∗

2 θ1 + (u + t)θ∗
1 θ1 + (v + t)θ∗

2 θ2

+ xθ1θ2 + x∗θ∗
2 θ∗

1 + tθ∗
1 θ1θ

∗
2 θ2.

4.22. Show that the P -representation may be used to evaluate the mean values of
normally ordered products of monomials such as

∏
i{a†ni

i a
mi

i }, i.e., one has the
following relation
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.Tr

[
∏

i

{
a
†ni

i a
mi

i

}
ρ

]

=
∫

d2α
∏

i

{
α

∗ni

i α
mi

i

}
P(α).



5Coherent States Path Integrals

5.1 Path Integrals Formalism

Quantum mechanics was originally proposed to understand the stability of atoms
and their discrete spectra. The key is that material particles such as electrons behave
like waves in the atomic length scale. Such matter waves cannot be squeezed
into an arbitrary small volume, unless their frequencies and energies increase
unlimitedly, which is a physical impossibility and ensures atomic stability. In the
conventional canonical formalism of quantum mechanics, the wave function of a
nonrelativistic particle evolves over time according to the Schrödinger equation
.(ih̄∂t − Ĥ )�(x, t) = 0, where .Ĥ (p̂, x, t) is a differential operator obtained
from the classical Hamiltonian .H(p, x, t) by replacing .p as .p̂ ≡ −ih̄∇, so
that the Schrödinger operators of momentum satisfy with positions the canonical
commutation relations .[p̂i , x̂j ] = −ih̄δij .

In terms of the Dirac’s bra-ket notation, the Schrödinger equation may be
expressed in a basis-independent way as an operator equation .ih̄∂t |�(t)〉 =
H(p̂, x̂, t)|�(t)〉, supplemented by the specifications of the canonical operators
.〈x|p̂ ≡ −ih̄∇〈x| and .〈x|x̂ ≡ x〈x|. The above canonical formalism is widely
taught at the undergraduate level in a first course of quantum mechanics. However,
this traditional approach to quantum mechanics may not always lead to either the
simplest solution or the most natural understanding of quantum phenomena.

An equivalent formalism of quantum mechanics using infinite products of
integrals, called “path integrals,” in which operators are not taken in the first place,
was developed by Richard Feynman in his 1942 thesis [19] and was published in
1948 in a seminal paper titled Space-Time Approach to Non-relativistic Quantum
Mechanics [18]. The key points of Feynman’s path integral approach are the
following:
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(i) The probability for a particle to move from a space-time point .(xa, ta) to
another space-time point .(xb, tb) is given by the squared modulus of a complex
transition amplitude .K(xb, tb; xa, ta).

(ii) The transition amplitude is the sum of contributions from all paths in the
configuration space.

(iii) All the paths contribute equally in amplitude, but the phase for each path is
proportional to the classical action along the path. In contrast to the conven-
tional formalism of quantum mechanics that builds on the Schrödinger equation
involving only the knowledge of the system at an earlier time, Feynman’s path
integrals formalism determines the transition amplitude in a global manner that
all the histories of the system are involved. In the following, we will discuss in
more detail the basic properties of the path integrals formalism.

To start with, we shall consider the simplest case that a point particle moving in
a one-dimensional Cartesian space, which yields a transition amplitude of the time
evolution operator between the localized states of the particle as

.K(xb, tb; xa, ta) ≡ 〈xb|Û (tb, ta)|xa〉, (5.1)

where .Û (tb, ta) ≡ e−i(tb−ta)Ĥ /h̄ is the time evolution operator for a time-
independent Hamiltonian .Ĥ ≡ T̂ + V̂ . As a consequence of the Trotter product
formula which reads

.e−i(tb−ta)Ĥ /h̄ = e−iε(N+1)(T̂ +V̂ )/h̄ = lim
N→∞

(
e−iεT̂ /h̄e−iεV̂ /h̄

)N+1
, (5.2)

the transition amplitude can be sliced into an infinity number of time evolution
operators, each acting on an infinitesimal slice of time of thickness .ε ≡ (tb −
ta)/(N + 1) > 0

.K(xb, tb; xa, ta) = 〈xb| lim
N→∞

N+1∏
n=1

Û (tn, tn−1)|xa〉, (5.3)

where .t0 ≡ ta and .tN+1 ≡ tb. The Trotter product formula is valid for potentials
which are bounded from below, i.e., there exists a real number C such that .V̂ + C

is a positive operator, and that is applicable for most physically relevant potentials
such as the harmonic potential. However, it should be stressed that it is not directly
applicable for singular potentials, such as the attractive Coulomb potential. For a
proof, readers are referred to the end of chapter problems.

We may now insert a series of resolution of identity in terms of the complete set
of position states between each pair of .Û (tn+1, tn) and .Û (tn, tn−1)

.

∫ ∞

−∞
dxn|xn〉〈xn| = I, for n = 1, · · · , N, (5.4)
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so that the transition amplitude becomes an infinite product of integrals

.K(xb, tb; xa, ta) = lim
N→∞

N∏
n=1

∫ ∞

−∞
dxn

N+1∏
n=1

K(xn, tn; xn−1, tn−1), (5.5)

where .x0 ≡ xa , .xN+1 ≡ xb, and .K(xn, tn; xn−1, tn−1) ≡ 〈xn|Û (tn, tn−1)|xn−1〉 is
the infinitesimal transition amplitude, which may be evaluated as

.K(xn, tn; xn−1, tn−1) = 〈xn|Û (tn, tn−1)|xn−1〉 = 〈xn|e−iεĤ /h̄|xn−1〉 (5.6)

=
∫ ∞

−∞
dx〈xn|e−iεV̂ /h̄|x〉〈x|e−iεT̂ /h̄|xn−1〉.

Evaluating the local matrix elements .〈xn|e−iεV̂ /h̄|x〉 and .〈x|e−iεT̂ /h̄|xn−1〉

.〈xn|e−iεV̂ /h̄|x〉 = δ(xn − x)e−iεV (xn)/h̄, . (5.7a)

〈x|e−iεT̂ /h̄|xn−1〉 = 1

2πh̄

∫ ∞

−∞
dpne

ipn(x−xn−1)/h̄e−iεT (pn)/h̄, (5.7b)

one immediately obtains the infinitesimal transition amplitude as

.K(xn, tn; xn−1, tn−1) =
∫ ∞

−∞
dpn

2πh̄
eipn(xn−xn−1)/h̄e−iε[V (xn)+T (pn)]/h̄, (5.8)

Substitution of Eq. (5.8) into Eq. (5.5) will yield Feynman’s path integral formula
of the transition amplitude, which consists of an infinite product of integrals

.K(xb, tb; xa, ta) = lim
N→∞

N∏
n=1

∫ ∞

−∞
dxn

N+1∏
n=1

∫ ∞

−∞
dpn

2πh̄
e

i
h̄
[pn(xn−xn−1)−εH(pn,xn)]

= lim
N→∞

N∏
n=1

[∫ ∞

−∞
dxn

]N+1∏
n=1

[∫ ∞

−∞
dpn

2πh̄

]
e

iε
h̄

∑N+1
n=1 [pn

xn−xn−1
ε

−H(pn,xn)]
,

where .H(pn, xn) ≡ T (pn) + V (xn).
As can be seen from the above formula, since the position variables .xN+1 and .x0

are fixed at the initial values .xb and .xa , all the paths satisfy the boundary conditions
.x(ta) = xa and .x(tb) = xb. The phase of the transition amplitude in the continuous
limit .N → ∞ and .ε → 0 is precisely the classical canonical action for a path
.(x(t), p(t)) in phase space.
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In fact, we may go one step further and obtain a configuration space path integral.
As .H(p, x) = 1

2m
p2 + V (x), the phase of the transition amplitude

.
ε

h̄

N+1∑
n=1

[
pn

(
xn − xn−1

ε

)
− p2

n

2m
− V (xn)

]
, (5.9)

may be quadratically completed to

.
ε

h̄

N+1∑
n=1

[
m

2

(
xn − xn−1

ε

)2

− 1

2m

(
pn − xn − xn−1

ε
m

)2

− V (xn)

]
. (5.10)

The momentum integrals in Feynman’s path integrals formula may be evaluated by
using the complex Fresnel integrals:

.

∫ ∞

−∞
dpe± i

2 ap2 =
√

±2πi

a
for a > 0, (5.11)

so that after integration, the transition amplitude becomes

.K(xb, tb; xa, ta) =
√

m

2πh̄iε
lim

N→∞

N∏
n=1

[∫ ∞

−∞
dxn√

2πh̄iε/m

]
e
∑N+1

i=1
iε
h̄

L(xn,xn−1),

where .xN+1 ≡ xb and .x0 ≡ xa and .L(xn, xn−1) ≡ m
2 (

xn−xn−1
ε

)2 − V (xn) is the
Lagrangian of the one-dimensional point particle evaluated on the infinitesimal line
connecting .xn and .xn−1 in the configuration space.

In the continuum limit, one may write the transition amplitude as

.K(xb, tb; xa, ta) =
∫ x(tb)=xb

x(ta)=xa

Dxe
i
h̄

∫ tb
ta

dtL(ẋ,x)
, (5.12)

where .L(ẋ, x) ≡ m
2 ẋ2 − V (x) is the Lagrangian of a point particle and

.Dx ≡
√

m

2πh̄iε
lim

N→∞

N∏
n=1

[∫ ∞

−∞
dxn√

2πh̄iε/m

]
(5.13)

is the limiting measure of integration.
As a first example, one may calculate the transition amplitude for a free particle

with .V (x) = 0 in terms of Feynman’s path integral formula. One may first evaluate
the path integral evaluated on the broken line which connects the points .xn+1, .xn,
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and .xn−1

.

√
m

2πh̄iε

∫ ∞

−∞
dxn√

2πh̄iε/m
e

iε
h̄

m
2

(
xn+1−xn

ε

)2

e
iε
h̄

m
2

(
xn−xn−1

ε

)2

(5.14)

=
√

m

2πh̄i · 2ε
e

i·2ε
h̄

m
2

(
xn+1−xn−1

2ε

)2

,

which equals the transition amplitude for the straight line which connects the two
end points .xn+1 and .xn−1. As a result, one obtains the full expression of the free
particle transition amplitude

.K(xb, tb; xa, ta) =
√

m

2πh̄i(N + 1)ε
e

i(N+1)ε
h̄

m
2

(
xN+1−x0
(N+1)ε

)2

(5.15)

=
√

m

2πh̄i(tb − ta)
e

i
h̄

m
2

(xb−xa)2

tb−ta ≡ F0(tb − ta)e
i
h̄
S[xc].

Equation (5.15) shows that the transition amplitude for a free particle may
be factorized into a product of a classical amplitude .eiS[xc]/h̄ and a quantum
fluctuation factor .F0(tb − ta), where .S[xc] is the action integral evaluated on
the classical path .xc(t) which satisfies the equation of motion .ẍc(t) = 0 and the
boundary conditions .x(tb) = xb and .x(ta) = xa . Due to the vanishing of deviations
with respect to the classical paths at the end points, the quantum fluctuation factor
does not depend on the end points .xb and .xa : .δx(tb) = δx(ta) = 0, with
.δx(t) ≡ x(t) − xc(t).

As another example, one may evaluate Feynman’s path integral for a one-
dimensional harmonic oscillator with .V (x) ≡ m

2 ω2x2. As in the case of a
free particle, the transition for a harmonic oscillator can be split into a product
of a classical amplitude .eiS[xc]/h̄ and a quantum fluctuation factor .Fω(tb − ta).
Obviously, the classical path which satisfies the equation of motion .ẍc(t) =
−ω2xc(t) and the boundary conditions .x(tb) = xb and .x(ta) = xa has the
form

.xc(t) = xb sin ω(t − ta) + xa sin ω(tb − t)

sin ω(tb − ta)
. (5.16)

Notice that Eq. (5.16) is available only when .tb − ta �= kπ/ω, with k being
an arbitrary integer. The cases for .tb − ta = kπ/ω, known as caustic phe-
nomena, have to be treated separately, since the classical path .xc(t) no longer
exists.
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With the above as preamble, we may rewrite the classical action integral by using
integration by parts as

.S[xc] ≡ m

2

∫ tb

ta

dt
(
ẋ2
c (t) − ω2xc(t)

)
(5.17)

= −m

2

∫ tb

ta

xc(t)
[
ẍc(t) + ω2xc(t)

]
+ m

2
xc(t)ẋc(t)

∣∣∣
tb

ta
.

Since the classical path for a harmonic oscillator satisfies the equation of motion
.ẍc(t) + ω2xc(t) = 0, the first term in Eq. (5.17) vanishes identically. By using
Eq. (5.16), one can directly calculate the second term in Eq. (5.17) as

.S[xc] = m

2
[xc(tb)ẋc(tb) − xc(ta)ẋc(ta)] (5.18)

= mω

2 sin ω(tb − ta)

(
(x2

b + x2
a) cos ω(tb − ta) − 2xbxa

)
.

We now evaluate the quantum fluctuation factor .Fω(tb − ta) for the quantum
fluctuations .δx(t) with respect to the classical path .xc(t) which is given by Eq. (5.16)
based on the boundary conditions .δx(ta) = δx(tb) = 0

.Fω(tb − ta) =
∫ δx(tb)=0

δx(ta)=0
Dδx exp

{
i

h̄

m

2

∫ tb

ta

dt

[(
dδx

dt

)2

− ω2δx2

]}
(5.19)

≡
√

m

2πh̄iε
lim

N→∞

N∏
n=1

[∫ ∞

−∞
dδxn√

2πh̄iε/m

]
exp

(
i

h̄
SN [δx]

)
,

where .SN [δx] is the time-sliced quadratic fluctuation expansion around the classical
action, which is given by

.SN [δx] = m

2
ε

N+1∑
n=1

[(
δxn − δxn−1

ε

)2

− ω2δx2
n

]
(5.20)

≡ m

2
ε

N+1∑
n=1

[
(∇δxn)

2 − ω2δx2
n

]
= m

2
ε

N∑
n=0

[
(∇δxn)

2 − ω2δx2
n

]
,

where .∇δxn and .∇δxn are the lattice derivatives acting on the quantum fluctuations
.δxn at times .tn, defined by

.∇δxn ≡ δxn − δxn−1

ε
, for 1 ≤ n ≤ N + 1, . (5.21a)

∇δxn ≡ δxn+1 − δxn

ε
, for 0 ≤ n ≤ N. (5.21b)
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In the continuum limit .ε → 0, both the two lattice derivatives .∇ and .∇ are
reduced to the ordinary time derivative .d/dt :

. lim
ε→0

∇δx(t) ≡ lim
ε→0

δx(t) − δx(t − ε)

ε
= dx(t)

dt
, . (5.22a)

lim
ε→0

∇δx(t) ≡ lim
ε→0

δx(t + ε) − δx(t)

ε
= dx(t)

dt
. (5.22b)

After carrying out a summation by parts, the time-sliced action can now be
expressed as

.SN [δx] = m

2
ε

N+1∑
n=1

[
(∇δxn)

2 − ω2δx2
n

]
(5.23)

= −m

2
ε

N∑
n=1

δxn

(
∇∇ + ω2

)
δxn,

where .∇∇ is the lattice Laplacian acting on the quantum fluctuations .δxn at times
.tn, defined by .∇∇δxn ≡ (δxn+1 − 2δxn + δxn−1)/ε

2. Notice that the boundary
terms have been dropped in the last step of Eq. (5.23), as the quantum fluctuations
will vanish at the end points: .δx(tb) = δx(ta) = 0. As all the paths .δx(t) are from
.δx = 0 at .ta and arrive at .δx = 0 at .tb, one may expand .δx(t) at discrete points
.δx(tn) into discrete Fourier series as

.δx(tn) =
N∑

m=1

√
2

N + 1
sin νm(tn − ta)δx(νm), (5.24)

where .νm ≡ mπ/T and .T ≡ tb − ta is the period of the Fourier series. A
key property of the discrete Fourier transform is that the expansion functions are
orthogonal to each other

.
2

N + 1

N∑
n=1

sin νm(tn − ta) sin νm′(tn − ta) = δmm′ , (5.25)

After using the orthogonal relation Eq. (5.25), the time-sliced fluctuation action
.SN [δx] may be expressed as a sum of independent quadratic terms

.SN [δx] = m

2
ε

N∑
m=1

(
	2

m − ω2
)

[δx(νm)]2 ≡ m

2
ε

N∑
m=1

	̃2
m[δx(νm)]2, (5.26)
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where .	2
m ≡ (2 − 2 cos(νmε))/ε2 are the real and non-negative eigenvalues of the

negative lattice laplacian, i.e., .−∇∇δxn = 	2
mδxn. Hence, the quantum fluctuation

factor .Fω(tb − ta) can be expressed as a product of N independent Fresnel integrals

.Fω(tb − ta) =
√

m

2πh̄iε
lim

N→∞

N∏
m=1

[∫ ∞

−∞
dδx(νm)√
2πh̄iε/m

e
i
h̄

m
2 ε	̃2

m[δx(νm)]2
]

, (5.27)

where we have used the fact that the transformation from the variables .δxn to the
Fourier components .x(νm) has a unit determinant due to the orthogonality relation,
so that .

∏N
n=1 dδx(tn) = ∏N

m=1 dδx(νm). For the case when .	2
m > ω2 for all m, the

coefficients .	̃2
m ≡ 	2

m − ω2 are all positive, and hence a direct computation would
yield

.Fω(tb − ta) =
√

m

2πh̄iε
lim

N→∞

N∏
m=1

1√
ε2	̃2

m

, (5.28)

where the infinite product involved in the fluctuation factor .Fω(tb − ta) can be
evaluated as

.

N∏
m=1

ε2	̃2
m ≡

N∏
m=1

[
ε2(	2

m − ω2)
]

(5.29)

=
N∏

m=1

(
2 − 2 cos

mπ

N + 1

) N∏
m=1

[
1 − sin2 εω̃

2

sin2 mπ
2(N+1)

]

= (N + 1) · sin(N + 1)ω̃ε

(N + 1) sin ω̃ε
= sin ω̃(tb − ta)

sin ω̃ε
,

where .ω̃ is an auxiliary frequency defined by .sin(ω̃ε/2) ≡ ωε/2. Substitution of
Eq. (5.29) into (5.28) immediately yields

.Fω(tb − ta) = lim
ε→0

√
m

2πh̄iε

√
sin ω̃ε

sin ω̃(tb − ta)
(5.30)

=
√

m

2πh̄i

√
ω

sin ω(tb − ta)
,

where we have used the fact that .ω̃ → ω in the continuum limit .ε → 0. A direct
computation shows that the condition for .	2

m > ω2 is .tb − ta < π/ω̃. When .tb − ta
grows larger than .π/ω̃, the coefficient .	2

1 − ω2 becomes negative, and there will
be a .e−iπ/2 phase factor in the Fresnel integral of the associated Fourier component
.δx(ν1).
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Similarly, when .tb − ta continues to grow until .tb − ta > 2π/ω̃, the coefficient
.	2

2 − ω2 becomes negative too, and there will be an extra phase factor .e−iπ/2 in
the associate Fresnel integral. Hence, for .kπ/ω̃ < tb − ta < (k + 1)π/ω̃, an
extra phase factor .e−ikπ/2, known as the Maslov-Morse index, will appear in the
quantum fluctuation factor .Fω(tb − ta), so that in the continuum limit .ε → 0, the
full expression of the transition amplitude becomes

.K(xb, tb; xa, ta) =
√

m

2πh̄i

√
ω

| sin ω(tb − ta)|e
−ikπ/2 (5.31)

× exp

{
i

h̄

mω

2 sin ω(tb − ta)

(
(x2

b + x2
a ) cos ω(tb − ta) − 2xbxa

)}
,

for .kπ/ω < tb − ta < (k + 1)π/ω. Clearly, for the special case when .ω → 0, the
transition amplitude for a harmonic oscillator, Eq. (5.31), reduces to that for a free
particle, Eq. (5.15). To evaluate the path integral for the harmonic oscillator at the
caustics .tb − ta = kπ/ω, one needs to notice that the transition amplitude connects
the wave functions at different times as follows

.ψtb(xb) =
∫ ∞

−∞
K(xb, tb; xa, ta)ψta (xa)dxa. (5.32)

Hence, for .tb − ta = π/(2ω), one may evaluate the wave function .ψtb(xb) at .tb by
using the path integral formula Eq. (5.31) as

.ψtb(xb) =
√

mω

2πh̄i

∫ ∞

−∞
e
− i

h̄
mωxbxaψta (xa)dxa. (5.33)

One may introduce a dimensionless variable .u ≡ x/L with .L ≡ √
h̄/(mω) being

the natural length for the harmonic oscillator, and then from Eq. (5.33), one sees that
the wave function .ψtb(Lub) is the Fourier transform of the wave function .ψta (Lua)

multiplied by a phase factor .e−iπ/4:

.ψtb(Lub) = e−iπ/4

√
2π

∫ ∞

−∞
e−iubuaψta (Lua)dua. (5.34)

Similarly, for .tc − tb = π/(2ω), one has the following relation between the wave
functions at times .tc and .tb

.ψtc (Luc) = e−iπ/4

√
2π

∫ ∞

−∞
e−iucubψtb (Lub)dub (5.35)

= e−iπ/2

2π

∫ ∞

−∞

∫ ∞

−∞
e−i(uc+ua)ubψta (Lua)dubdua.

= e−iπ/2
∫ ∞

−∞
δ(uc + ua)ψta (Lua)dua = e−iπ/2ψta (−Luc).
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Hence for .tb − ta = kπ/(2ω), one immediately obtains

.ψtb(xb) = e−ikπ/2ψta ((−1)kxb), (5.36)

which implies that the transition amplitude .K(xb, tb; xa, ta) for .tb − ta = kπ/ω has
the form

.K(xb, tb; xa, ta) = e−ikπ/2δ(xa − (−1)kxb). (5.37)

5.2 Coherent States Path Integral

In the previous section, we showed that the transition matrix element
.〈xb|Û (tb, ta)|xa〉 can be expressed in the form of path integrals. This provides
an alternative approach to quantum mechanics in addition to the traditional
canonical approach. Historically, Feynman’s original formulation of the path
integral was restricted to the position and momentum representations in quantum
mechanics, which cannot be applied to some kinematical systems including the
spin systems. In order to overcome the problem, in 1960, John Klauder developed
a general path integral formulation of both bosonic fields and spinor fields in
terms of the coherent states, in a seminal paper titled “The action option and a
Feynman quantization of spinor fields in terms of ordinary c-numbers” [21]. In
fact, Klauder’s coherent states, which was introduced as an over-complete basis in
the Hilbert space, appeared 3 years earlier than Glauber’s coherent states. In the
following, we will present in detail Klauder’s construction of coherent state path
integrals.

As an analogue of Eq. (5.38), one can begin with the transition amplitude

.〈zb|Û (tb, ta)|za〉 of the time evolution operator .Û (tb, ta) ≡ e−i(tb−ta)Ĥ (a†,a)/h̄

between two coherent states .|za〉 and .|zb〉, where .Ĥ (a†, a) is a Hamiltonian of
a bosonic system, which is assumed to be a normal ordered operator of the
annihilation and creation operators, i.e., all creation operators are to the left of
all annihilation operators in the product. As a consequence of the Trotter product
formula, one may still express the transition amplitude into an infinite product of
time evolution operators

.K(zb, tb; za, ta) ≡ 〈zb|Û (tb, ta)|za〉 = 〈zb| lim
N→∞

N+1∏
n=1

Û (tn, tn−1)|za〉, (5.38)

where .tn ≡ ta+nε and .ε ≡ (tb−ta)/(N+1). To generate a path integral formulation
for the transition amplitude, one may use the resolution of identity in terms of the
coherent states, Eq. (2.51), and repeatedly insert the identity operator into Eq. (5.38),
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which yields

.K(zb, tb; za, ta) = lim
N→∞

∫
· · ·

∫ N∏
n=1

d2zn

π

N+1∏
n=1

〈zn|Û (tn, tn−1)|zn−1〉, (5.39)

where .d2zn ≡ d�znd�zn and the integration extends over the entire complex z-
plane. In the limit .N → ∞ and .ε → 0, one may evaluate each term in the integrand
in Eq. (5.39) as follows (up to the first order in .ε)

.〈zn|Û (tn, tn−1)|zn−1〉 ≡ 〈zn|e−i ε
h̄
Ĥ (a†,a)|zn−1〉 (5.40)

≈ 〈zn|I − i
ε

h̄
Ĥ (a†, a)|zn−1〉

= 〈zn|zn−1〉
(

1 − i
ε

h̄

〈zn|Ĥ (a†, a)|zn−1〉
〈zn|zn−1〉

)
,

≈ 〈zn|zn−1〉 exp

(
−i

ε

h̄

〈zn|Ĥ (a†, a)|zn−1〉
〈zn|zn−1〉

)
,

≡ 〈zn|zn−1〉 exp

(
−i

ε

h̄
H(zn−1, z

∗
n)

)
,

where .H(zn−1, z
∗
n) is a function obtained from the normal ordered Hamiltonian by

using the substitutions .a† → z∗
n and .a → zn−1, e.g., .H(zn−1, z

∗
n) = gz

∗p
n z

q

n−1 for

.Ĥ (a†, a) = ga†paq , and .〈zn|zn−1〉 = ez∗
nzn−1− 1

2 |zn|2− 1
2 |zn−1|2 is the overlap between

two adjacent coherent states .|zn〉 and .|zn−1〉. Substituting Eq. (5.40) into Eq. (5.39)
will yield

.K(zb, tb; za, ta) = lim
N→∞

∫
· · ·

∫ N∏
n=1

d2zn

π
exp

{
i

N+1∑
n=1

(5.41)

[
i

2
(z∗

n(zn − zn−1) − zn−1(z
∗
n − z∗

n−1)) − ε

h̄
H(zn−1, z

∗
n)

]}
.

Assuming the existence of the derivatives .żn ≡ (zn − zn−1)/ε and .ż∗
n ≡ (z∗

n −
z∗
n−1)/ε in the continuous limit .N → ∞ and .ε → 0, and using the approximations

.εH(zn−1, z
∗
n) ≈ εH(zn, z

∗
n) − ε2∂zH(zn, z

∗
n)żn = εH(zn, z

∗
n) + O(ε2) and

.zn−1(z
∗
n−z∗

n−1) ≈ εznż
∗
n−ε2|żn|2 = εznż

∗
n+O(ε2), one obtains the final expression

of the transition amplitude as a path integral

.K(zb, tb; za, ta) =
∫

Dz∗Dz exp

{
i

h̄
S(z(t), z∗(t))

}
, (5.42)
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where .z(t) and .z∗(t) are subjected to the boundary conditions .z(ta) = za and
.z∗(tb) = z∗

b and .S(z(t), z∗(t)) is the classical action defined by

.S(z(t), z∗(t)) ≡
∫ tb

ta

[
ih̄

2
(z∗ż − zż∗) − HQ(z, z∗)

]
dt. (5.43)

Here, .HQ(z, z∗) ≡ 〈z|Ĥ (a†, a)|z〉 is the expectation value of the Hamiltonian
operator .Ĥ (a†, a) evaluated in the coherent states—the Husimi Q-representation of
the Hamiltonian operator, e.g., .HQ(z, z∗) = gz∗pzq for .Ĥ (a†, a) = ga†paq .

It must be underscored that the appearance of the Q-representation in the
coherent state path integrals is not a coincidence. Both Klauder and Skagerstam
[76] had shown that one can calculate the infinitesimal time evolution opera-

tor .e
− iε

h̄
Ĥ (a†,a) via the Glauber-Sudarshan P -representation of the Hamiltonian

operator, .Ĥ (a†, a) ≡ ∫
d2z
π

HP (z, z∗)|z〉〈z|. More precisely, one may express the
infinitesimal time evolution operator as

.e
− iε

h̄
Ĥ (a†,a) ≈ I − iε

h̄
Ĥ (a†, a) (5.44)

= I − iε

h̄

∫
d2zn

π
HP (zn, z

∗
n)|zn〉〈zn|

=
∫

d2zn

π

(
1 − iε

h̄
HP (zn, z

∗
n)

)
|zn〉〈zn|

≈
∫

d2zn

π
e
− iε

h̄
HP (zn,z∗

n)|zn〉〈zn|.

Hence, the transition amplitude can be written into an infinite product as

.K(zb, tb; za, ta) ≡ 〈zb|Û (tb, ta)|za〉 = 〈zb| lim
N→∞

N∏
n=1

Û (tn, tn−1)|za〉 (5.45)

= lim
N→∞

N∏
n=1

∫
· · ·

∫
d2zn

π

N+1∏
n=1

〈zn|zn−1〉e− iε
h̄

HP (zn,z∗
n)

,

where .z0 ≡ za and .zN+1 ≡ zb. Using the formula of the overlap between

two adjacent coherent states, .〈zn|zn−1〉 = ez∗
nzn−1− 1

2 |zn|2− 1
2 |zn−1|2 , one immediately

obtains the discrete version of the coherent state path integral

.K(zb, tb; za, ta) = lim
N→∞

∫
· · ·

∫ N∏
n=1

d2zn

π
exp

{
i

N+1∑
n=1

(5.46)

[
i

2
(z∗

n(zn − zn−1) − zn−1(z
∗
n − z∗

n−1)) − ε

h̄
HP (zn, z

∗
n)

]}
.
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Assuming the existence of the derivatives .żn ≡ (zn − zn−1)/ε and .ż∗
n ≡ (z∗

n −
z∗
n−1)/ε in the continuous limit .N → ∞ and .ε → 0, and using the approximation

.zn−1(z
∗
n−z∗

n−1) ≈ εznż
∗
n−ε2|żn|2 = εznż

∗
n+O(ε2), one obtains the final expression

of the transition amplitude as a coherent state path integral

.K(zb, tb; za, ta) =
∫

Dz∗Dz exp

{
i

h̄
S(z(t), z∗(t))

}
, (5.47)

where .z(t) and .z∗(t) are subjected to the boundary conditions .z(ta) = za and
.z∗(tb) = z∗

b and .S(z(t), z∗(t)) is the classical action defined by

.S(z(t), z∗(t)) ≡
∫ tb

ta

[
ih̄

2
(z∗ż − zż∗) − HP (z, z∗)

]
dt. (5.48)

In contrast to the previous approach, the advantage of using the Glauber-Sudarshan
P -representation to evaluate the transition amplitude is twofold: not only the two
arguments of .HP (zn, z

∗
n) in the discrete coherent state path integral belong to the

same time in the mesh, but also the approximation .εH(zn−1, z
∗
n) ≈ εH(zn, z

∗
n) +

O(ε2) used to derive the continuous limit Eq. (5.42) is avoided.
As an example, one may consider the coherent state path integral for a harmonic

oscillator with a Hamiltonian .Ĥ (a†, a) = h̄ωa†a. A direct computation yields
.H(zn−1, z

∗
n) ≡ h̄ωz∗

nzn−1. According to Eq. (5.41), the discrete coherent state path
integral for a harmonic oscillator has the form

.K(zb, tb; za, ta) = lim
N→∞

∫
· · ·

∫ N∏
n=1

d2zn

π
exp

{
i

N+1∑
n=1

(5.49)

[
i

2
(z∗

n(zn − zn−1) − zn−1(z
∗
n − z∗

n−1)) − εωz∗
nzn−1

]}
.

Using the identity .
∑N+1

n=1 |zn−1|2 = ∑N+1
n=1 |zn|2 + |za|2 − |zb|2, one may write the

transition amplitude for a harmonic oscillator as

.K(zb, tb; za, ta) = e− 1
2 |za |2− 1

2 |zb|2 lim
N→∞

∫
· · ·

∫ N∏
n=1

d2zn

π
(5.50)

exp

{
N+1∑
n=1

(1 − iεω)z∗
nzn−1 −

N∑
n=1

|zn|2
}

.

Since the exponential of the transition amplitude .K(zb, tb; za, ta) for a harmonic
oscillator involves only quadratic forms, one may obtain .K(zb, tb; za, ta) by using
a series of complex Gaussian integrals. To begin with, one needs to evaluate the
complex Gaussian integral for the non-diagonal quadratic form .−|z1|2 + f (zaz

∗
1 +



96 5 Coherent State Path Integrals

z∗
2z1) with .f ≡ 1 − iεω. Using the formula

.

∫
d2z

π
ea1z

2+a2z
∗2+a3zz

∗+b1z+b2z
∗ =

exp

(
b2

1a2+b2
2a1−b1b2a3

a2
3−4a1a2

)

√
a2

3 − 4a1a2

, (5.51)

one immediately obtains

.

∫
d2z1

π
e−z1z

∗
1+f z∗

2z1+f zaz∗
1 = ef 2zaz∗

2 . (5.52)

Hence, as the next step, one needs to evaluate the complex Gaussian integral for
the non-diagonal quadratic form .−|z2|2 + f z∗

3z2 + f 2zaz
∗
2, which results in an

exponential factor .ef 3zaz∗
3 . After integrating all the variables .zn for .n = 1, 2, · · · N ,

one obtains an exponential factor .ef N+1zaz∗
b . Hence, the final expression for the

transition amplitude for a harmonic oscillator is

.K(zb, tb; za, ta) = e− 1
2 |za |2− 1

2 |zb|2 lim
N→∞ ef N+1z∗

bza (5.53)

= e− 1
2 |za |2− 1

2 |zb|2 lim
N→∞ e

(
1− iω(tb−ta )

N+1

)N+1
z∗
bza

= exp

(
−1

2
|za|2 − 1

2
|zb|2 + e−iω(tb−ta)z∗

bza

)
.

5.3 Functional Quantum Field Theory

In this section, we discuss the functional integral formalism of quantum field theory
which describes a system with an infinite number of degrees of freedom, based on
the method of coherent state path integration introduced in the last section. To begin
with, we shall consider coherent state path integrals over a .d + 1 dimensional scalar
field .φ(x, t). Here, the scalar field .φ(x, t) is a function of .x and t defined in a .(d+1)-
dimensional space-time. A scalar field in quantum field theory is the dynamical
variable and the coordinates .x are regarded as labels, which simply specify the scalar
field at a given point in space. The action for a free scalar field .φ(x, t) is given by

.S[φ(x, t)] =
∫

dt

∫
ddxL(φ(x, t), ∂μφ(x, t)), (5.54)

where .L(φ, ∂μφ) ≡ − 1
2 (∂μφ)2 − 1

2m2φ2 ≡ 1
2 (∂tφ)2 − 1

2 (∇φ)2 − 1
2m2φ2

is the Lagrangian density, which gives the Lagrangian after integration over
space. Here, we adopted a metric with signature .(−1, 1, · · · , 1). In general, the
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Lagrangian density for a scalar field with a self-interaction is given by .L(φ, ∂μφ) =
− 1

2 (∂μφ)2 − V (φ), with .V (φ) ≡ 1
2m2φ2 + ∑∞

n=3
1
n!λnφ

n.
The canonical quantization procedure starts with a scalar field .φ(x, t) and

its conjugate momentum field .π(x, t), which satisfy the equal time commuta-
tion relations. In particular, the conjugate momentum field of .φ(x, t) is defined
by

.π(x, t) ≡ δL
δφ̇(x, t)

= φ̇(x, t). (5.55)

Then one may introduce the Hamiltonian as

.H [φ, π ] =
∫

ddx
(
πφ̇ − L

) = 1

2

∫
ddx

(
π2 + (∇φ)2 + m2φ2

)
, (5.56)

which is a functional of .φ(x, t) and .π(x, t). In quantum field theory, the field is
an infinite set of harmonic oscillator operators acting on the quantum mechanical
Hilbert space, which may be decomposed in terms of the creation and annihilation
operators as

.φ̂(x, t) =
√

h̄

(2π)d

∫
ddk√
2ωk

[âkeik·x + â
†
ke−ik·x], . (5.57a)

π̂(x, t) = −i

√
h̄

(2π)d

∫
ddk

√
ωk

2
[âkeik·x − â

†
ke−ik·x]. (5.57b)

where the frequencies are given by .ωk = √
k2 + m2. Using the commutation

relations between the creation and annihilation operators, i.e., .[âk, â
†
q] = δd(k−q),

one obtains the equal time commutation relations between the field operator and its
conjugate momentum field operator

.[φ̂(x, t), π̂(x′, t ′)]t=t ′ = ih̄δd(x − x′). (5.58)

Substitution of Eqs. (5.57a)–(5.57b) into Eq. (5.56) immediately yields the
Hamiltonian for the free scalar field .φ̂(x, t)

.Ĥ = h̄

2

∫
ddkωk(â

†
kâk + âkâ

†
k). (5.59)

One may now define scalar field coherent states as the common eigenstates of the
field operators and the conjugate momentum field operators, i.e., .φ̂(x, t)|φ, π〉 =
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φ(x, t)|φ, π〉 and .π̂(x, t)|φ, π〉 = π(x, t)|φ, π〉, where

.φ(x, t) =
√

h̄

(2π)d

∫
ddk√
2ωk

[zkeik·x + z∗
ke−ik·x], . (5.60a)

π(x, t) = −i

√
h̄

(2π)d

∫
ddk

√
ωk

2
[zkeik·x − z∗

ke−ik·x]. (5.60b)

In fact, the scalar field coherent states may be obtained from the vacuum state
through the application of a unitary operator, i.e., .|φ, π〉 ≡ exp[ i

h̄

∫
ddx(πφ̂ −

φπ̂)]|0〉. A direct computation will yield

.〈φ, π |φ̂|φ, π〉 = 〈0|e− i
h̄

∫
ddx(πφ̂−φπ̂)

φ̂e
i
h̄

∫
ddx(πφ̂−φπ̂)|0〉 (5.61)

= 〈0|φ̂ + i

h̄

∫
ddxφ[π̂ , φ̂]|0〉 = φ,

and similarly .〈φ, π |π̂ |φ, π〉 = π , where the vacuum state satisfies the relations
.〈0|φ̂|0〉 = 〈0|π̂ |0〉 = 0. Substituting Eqs. (5.57a)–(5.57b) and (5.60a)–(5.60b) into
the definition of the scalar field coherent states .|φ, π〉 will yield

.|φ, π〉 ≡ e
i
h̄

∫
ddx(πφ̂−φπ̂)|0〉 = exp

[∫
ddk(zka

†
k − z∗

kak)

]
|0〉, (5.62)

where the overlap between two scalar field coherent states .|φ, π〉 and .|φ′, π ′〉 has

the form .〈φ, π |φ′, π ′〉 = exp
[∫

ddk
(
z∗
kz

′
k − 1

2 |zk|2 − 1
2 |z′

k|2
)]

. Clearly, the scalar

field coherent state .|φ, π〉 is normalized to one, i.e., .〈φ, π |φ, π〉 = 1.
Based on the scalar field coherent states defined above, a functional inte-

gral formalism of quantum field theory may be obtained with the same pro-
cedure as in the single-particle case. As the coherent states for a degree of
freedom form an over-complete basis of the single-particle Hilbert space, the
scalar field coherent states form an over-complete basis of the many-particle
Fock space, which is a direct sum of the tensor products of copies of single-
particle Hilbert spaces. In fact, one may introduce a resolution of identity in
terms of the scalar field coherent states by discretizing the space onto a lat-
tice

.N
∫ [dφ(x)][dπ(x)]

(2π)(2L+1)d
|φ, π〉〈φ, π | = I, (5.63)
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with the measures .[dφ(x)] and .[dπ(x)] defined by

.[dφ(x)] ≡
d∏

k=1

L
a∏

nk=− L
a

dφ(n1a, · · · , nda), . (5.64a)

[dπ(x)] ≡
d∏

k=1

L
a∏

nk=− L
a

dπ(n1a, · · · , nda), (5.64b)

where a is the size of the lattice spacing, L is a cutoff scale, and .N is a
normalization constant that depends on both a and L. Here, we have discretized the
space so that the continuous variables .(x1, · · · , xd) become the discrete variables
.(n1a, · · · , nda). The harmonic chain is recovered in the limit .a → 0. The procedure
of discretizing the space onto a lattice is essential for a proper definition of the over-
complete relation Eq. (5.63), as well as the functional integration measures appeared
in the coherent state path integration for a scalar field.

In order to derive a functional integral formalism for a quantum scalar field, one
may evaluate the Green’s function .G(tb, ta), i.e., the matrix element of the evolution
operator .Û (tb, ta) in the coherent state basis

.G(tb, ta) ≡ 〈φb, πb|Û (tb, ta)|φa, πa〉 (5.65)

= 〈φb, πb|T̂ exp

{
− i

h̄

∫ tb

ta

dtĤ (t)

}
|φa, πa〉,

where .T̂ is the time-ordering operator defined through

.T̂ {O1(t1) · · ·On(tn)} = Oπ(1)(tπ(1)) · · ·Oπ(n)(tπ(n)) (5.66)

when acting on a product of n field operators .O1, · · · ,On. Here, .π denotes a
permutation of .1, · · · , n such that .tπ(1) > · · · > tπ(n). One may now define a
coherent state path integral for a quantum scalar field similar to that for a harmonic
oscillator in the last section. In particular, one may divide the underlying time
interval .tb − ta into .N +1 subintervals .[tn, tn+1] with equal lengths, i.e., .tn = ta +nε

and .ε ≡ (tb − ta)/(N + 1). As a result of the Lie-Trotter product formula, the
evolution operator .Û (ta, tb) can be written as a product of .N +1 evolution operators
acting on the subintervals .[tn, tn+1] in the limit .N → ∞

.Û (tb, ta) = lim
N→∞

N+1∏
n=1

Û (tn, tn−1). (5.67)
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Now, one may insert the resolution of identity for scalar field coherent states,
namely, Eq. (5.63) at each interval points, which will yield

.G(tb, ta) = lim
N→∞ lim

L→∞ lim
a→0

N∏
n=1

N
(2π)(2L+1)d

∫
[dφn(x)][dπn(x)] (5.68)

·
N+1∏
n=1

〈φn, πn|Ûtn,tn−1 |φn−1, πn−1〉,

where .Û (tn, tn−1) ≈ exp[− iε
h̄
Ĥ (tn)]. Hence, up to the first order in .ε, the matrix

elements of the evolution operator in the coherent state basis may be approximated
by

.〈φn, πn|Û (tn, tn−1)|φn−1, πn−1〉 ≈ 〈φn, πn|φn−1, πn−1〉 (5.69)

· exp

(
−iε

h̄

〈φn, πn|Ĥ (tn)|φn−1, πn−1〉
〈φn, πn|φn−1, πn−1〉

)
.

As the scalar field coherent state is normalized, in the limit .ε → 0 and .N → ∞,
one obtains

.〈φn, πn|φn−1, πn−1〉 = 1 − ε〈φn, πn|∇̄|φn, πn〉 (5.70)

≈ exp(−ε〈φn, πn|∇̄|φn, πn〉),

where .∇̄|φn, πn〉 ≡ 1
ε
(|φn, πn〉 − |φn−1, πn−1〉) is the lattice derivative acting on

the scalar field coherent states at times .tn with .1 ≤ n ≤ N + 1. Substitution of
Eqs. (5.69) and (5.70) into (5.68) immediately yields

.G(tb, ta) = lim
N→∞ lim

L→∞ lim
a→0

N∏
n=1

N
(2π)(2L+1)d

∫
[dφn(x)][dπn(x)] (5.71)

· exp

{
N+1∑
n=1

iε

h̄

(
ih̄〈φn, πn|∇̄|φn, πn〉 − 〈φn, πn|Ĥ (tn)|φn, πn〉

)}

=
∫

D[φ, π ] exp

{
i

h̄

∫ tb

ta

dt

(
ih̄〈φ, π | d

dt
|φ, π〉 − 〈φ, π |Ĥ |φ, π〉

)}

=
∫

D[φ, π ] exp

{
i

h̄

∫ tb

ta

dt

∫
ddx

[
1

2
(πφ̇ − φπ̇) − H

]}
,



5.3 Functional Quantum Field Theory 101

where .D[φ, π ] is a function integration measure for the scalar field .φ and the
conjugate momentum field .π

.D[φ, π ] ≡ lim
N→∞ lim

L→∞ lim
a→0

N∏
n=1

N
(2π)(2L+1)d

∫
[dφn(x)][dπn(x)], (5.72)

and .H ≡ 1
2 (π2 + (∇φ)2 + m2φ2) is the Hamiltonian density for a free scalar field.

For a scalar field with a self-interaction, the scalar potential .
1
2m2φ2 is replaced

by .V (φ) ≡ 1
2m2φ2 + ∑∞

n=3
1
n!λnφ

n. Notice that as the phase of the Green’s
function .G(tb, ta) is a quadratic form in the conjugate momentum field .π , it may
be integrated out. From Eq. (5.71), one may write the discrete coherent state path
integral as

.G(tb, ta) =
∫

D[φ, π ] exp

{
iε

h̄

∫
ddx

N+1∑
n=1

[
φnπn−1 − φn−1πn

2ε
(5.73)

−1

2
π2

n − 1

2
(∇φn)

2 − 1

2
m2φ2

n

]}
,

where the phase of the Green’s function may be quadratically completed to

. − 1

2

N∑
n=1

(
πn − φn+1 − φn

2ε

)2

+ φ1πa − φNπb

2ε
− H(φb, πb) (5.74)

+1

2

N∑
n=1

[(
φn+1 − φn−1

2ε

)2

− (∇φn)
2 − V (φn)

]
.

After integrating out the conjugate momentum field .π , the Green’s function
.G(tb, ta) in the continuous limit .N → ∞ and .ε → 0 becomes

.G(tb, ta) = exp

{
i

2h̄

∫
ddx (φaπa − φbπb)

}
(5.75)

·
∫

D[φ] exp

{
i

2h̄

∫ tb

ta

dt

∫
ddx[φ̇2 − (∇φ)2 − V (φ)]

}
,

where .D[φ] is a functional integration measure for the scalar field .φ

.D[φ] ≡ lim
N→∞ lim

L→∞ lim
a→0

N∏
n=1

N
(2πiε/h̄)(2L+1)d/2

∫
[dφn(x)]. (5.76)
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Exercises

5.1. Prove that there exists a constant c such that for all n × n matrices B with
complex entries with ‖B‖< 1/2, we have

.‖log(I + B) − B‖ ≤ c‖B‖2,

where ‖B‖≡ (Tr(B†B))1/2 is the Hilbert-Schmidt norm of B.

5.2. Based on the about result, prove the Lie Product Formula for matrices: let X

and Y be two arbitrary n × n matrices with complex entries and then

.eX+Y = lim
N→∞

(
e

X
N e

Y
N

)N

.

5.3. Verify the relation

.〈x|e−iεT̂ /h̄|xn−1〉 = 1

2πh̄

∫ ∞

−∞
dpne

ipn(x−xn−1)/h̄e−iεT (pn)/h̄,

where T̂ ≡ p̂2/2m is the kinetic energy operator and T (p) ≡ p2/2m is the kinetic
energy.

5.4. Verify the free particle integral, Eq. (5.14).

5.5. Verify that the classical action integral S[xc] for a free particle is

.S[xc] ≡ m

2

∫ tb

ta

dt ẋ2
c (t) = m

2

(xb − xa)
2

tb − ta
,

where xc(t) is the classical path which satisfies the equation of motion ẍc(t) = 0
and the boundary conditions x(tb) = xb and x(ta) = xa .

5.6. Verify the expression of the classical path, Eq. (5.18).

5.7. Verity the orthogonal relation, Eq. (5.25).

5.8. Prove that the transformation from the variables δxn to the Fourier components
x(νm) has a unit determinant due to the orthogonality relation, Eq. (5.25), so that∏N

n=1 dδx(tn) = ∏N
m=1 dδx(νm).
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5.9. Verify the following relations

.

N∏
n=1

(
2 − 2 cos

mπ

N + 1

)
= N + 1,

N∏
m=1

[
1 − sin2 x

sin2 mπ
2(N+1)

]
= sin 2(N + 1)x

(N + 1) sin 2x
.

5.10. Verify Eq. (5.58) by using Eqs. (5.57a) and (5.57b).

5.11. Calculate the commutator [φ(x, t), φ(x′, t ′)] for the field operators at two
different space-time points by using Eqs. (5.57a) and (5.57b). Show that the
commutator vanishes when the two space-time points (x, t) and (x′, t ′) are separated
by a space-like distance, i.e., (x − x′)2 > (t − t ′)2. (Hint: Perform a Lorentz
transformation such that t = t ′ by exploiting the Lorentz invariance and then show
that the commutator vanishes because of an odd integrand.)

5.12. Verify Eq. (5.59). (Hint: use the integral 1
(2π)d

∫
ddxei(k−q)·x = δd(k − q).)

5.13. Verify Eq. (5.62) by using Eqs. (5.57a)–(5.57b) and (5.60a)–(5.60b).

5.14. Prove that 〈φ, π |φ′, π ′〉 = exp[∫ ddk(z∗
kz

′
k − 1

2 |zk|2 − 1
2 |z′

k|2)].

5.15. Show that for (φ′, π ′) → (φ, π), the overlap between the two scalar
field coherent states |φ, π〉 and |φ′, π ′〉 may be written as 〈φ, π |φ′, π ′〉 =
exp

{
− 1

2

∫
ddk(z∗

k żk − zkż
∗
k)
}

.

5.16. Verify the relation ih̄〈φ, π | d
dt

|φ, π〉 = 1
2

∫
ddx(πφ̇ − φπ̇).

End of Chapter Problems

1. Stationary-phase approximation [77]: The coherent state path integral provides
a natural framework to approximate the transition amplitude in the semiclassical
limit via the stationary-phase approximation. In the stationary-phase approxima-
tion or steepest-descent approximation, one may estimate the coherent state path
integral by looking for the stationary points of the exponent in Eq. (5.41) and
expanding the exponent in the vicinity of the stationary trajectory up to quadratic
terms, so that one obtains an analytical approximation of the quantum fluctuation
factor after performing a series of Gaussian integrals. To be precise, let us denote
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the transition amplitude as

.K(zb, tb; za, ta) = lim
N→∞

∫
· · ·

∫ N∏
n=1

d2zn

π
exp

{
f (z, z∗)

}
,

f (z, z∗) ≡
N+1∑
n=1

[ε
2
(zn−1∇z∗

n − z∗
n∇zn) − iε

h̄
H(zn−1, z

∗
n)],

where ∇zn ≡ (zn − zn−1)/ε and ∇z∗
n ≡ (z∗

n − z∗
n−1)/ε are the lattice derivatives

of z(t) and z∗(t) at time tn.
(a) Show that the stationary points (z̄, z̄∗) of the exponent f (z, z∗) are deter-

mined by

.z∗
n − z∗

n−1 − iε

h̄

∂H(zn−1, z
∗
n)

∂zn−1
= 0,

−(zn − zn−1) − iε

h̄

∂H(zn−1, z
∗
n)

∂z∗
n

= 0.

(b) Let us denote the quantum fluctuations around the stationary trajectory as
η ≡ z − z̄ and η∗ ≡ z∗ − z̄∗, which satisfy the boundary conditions η0 =
η∗

N+1 = 0. Show that the exponent f (z, z∗) can be expanded into a Taylor
series in η and η∗ around the stationary trajectory up to second order in η and
η∗ as

.f (z, z∗) = f (z̄, z̄∗) +
N+1∑
n=1

[
η∗

nηn−1 − 1

2
|ηn|2 − 1

2
|ηn−1|2

− iε

2h̄

(
∂2Hn−1,n

∂z2
n−1

η2
n−1 + 2

∂2Hn−1,n

∂zn−1∂z∗
n

η∗
nηn−1 + ∂2Hn−1,n

∂z∗2
n

η∗2
n

)]
,

where Hi,j ≡ H(zi, z
∗
j ), and show that the transition amplitude may be

approximated by

.K(zb, tb; za, ta) ≈ ef (z̄,z̄∗) lim
N→∞

∫
· · ·

∫ N∏
n=1

d2ηn

π

exp

{
N∑

n=1

[
− iε

2h̄

∂2Hn,n+1

∂z2
n

η2
n − iε

2h̄

∂2Hn−1,n

∂z∗2
n

η∗2
n

−η∗
nηn +

(
1 − iε

h̄

∂2Hn,n+1

∂zn∂z∗
n

)
η∗

n+1ηn

]}
.
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(c) Verify the following formula

.

∫
dη∗dη

2πi
ea1η

2+a2η
∗2+a3ηη∗+b1η+b2η

∗ =
exp

(
b2

1a2+b2
2a1−b1b2a3

a2
3−4a1a2

)

√
a2

3 − 4a1a2

by using the general formula for n-dimensional Gaussian integral

.

∫
e− 1

2 xT Ax+BT xdnx =
√

(2π)n

det A
e

1
2 BT A−1B.

(d) Show that applying the above formula to evaluate the complex Gaussian
integral for η1 and η∗

1 in the transition amplitude yields

.a1 = − iε

2h̄

∂2H1,2

∂z2
1

, a2 = − iε

2h̄

∂2H0,1

∂z∗2
1

≡ X1, a3 = −1,

b1 ≡
(

1 − iε

h̄

∂2H1,2

∂z1∂z∗
2

)
η∗

2, b2 = 0,

and

.K(zb, tb; za, ta) ≈ ef (z̄,z̄∗)

√
1 + 2iε

h̄

∂2H1,2

∂z2
1

X1

lim
N→∞

∫
· · ·

∫ N∏
n=1

d2ηn

π

exp

{
N∑

n=2

[
− iε

2h̄

∂2Hn−1,n

∂z2
n−1

η2
n−1 − iε

2h̄

∂2Hn−1,n

∂z∗2
n

η∗2
n − η∗

nηn

+
(

1 − iε

h̄

∂2Hn−1,n

∂zn−1∂z∗
n

)
η∗

nηn−1

]}
exp

⎛
⎜⎝

(1 − iε
h̄

∂H1,2
∂z1∂z∗

2
)2X1η

∗2
2

1 + 2iε
h̄

∂2H1,2

∂z2
1

X1

⎞
⎟⎠ .

(e) Show that the transition amplitude, after repeating the above process, may be
evaluated by

.K(zb, tb; za, ta) ≈ ef (z̄,z̄∗)

∏N
n=1

√
1 + 2iε

h̄

∂2Hn,n+1

∂z2
n

Xn

,

where Xn is determined by the following recursive relation

.Xn = − iε

2h̄

∂2Hn−1,n

∂z∗2
n

+
(1 − iε

h̄

∂Hn−1,n

∂zn−1∂z∗
n
)2Xn−1

1 + 2iε
h̄

∂2Hn−1,n

∂z2
n−1

Xn−1

, X0 = 0.



6Spin Coherent States

6.1 Spin Coherent States in QuantumOptics

As we have discussed at the end of chapter problem 2.31 of Chap. 2, a classical
prescribed atomic source of radiation, when applied to the vacuum state of a
quantized electromagnetic field, will always produce electromagnetic field coherent
states. The electromagnetic field coherent states may be obtained from the vacuum
state by a unitary displacement operator and are classical-like minimum uncertainty
states. With this as background, there would bring up a natural question: What
will happen when one applies a classical electromagnetic field to an assembly of
N atoms? The concept of spin coherent states, along this line of thought, was
first proposed by Radcliffe in a seminal paper titled Some properties of coherent
spin states [78] published in 1971, in analogous to coherent states for harmonic
oscillators, and was subsequently reexamined thoroughly by Arrechi, Courtens,
Gilmore, and Thomas in a paper titled Atomic Coherent States in Quantum Optics
published in 1972 [79].

In quantum optics, if the electromagnetic field operators were to be replaced
by their classical average values, the Hamiltonian which describes the interaction
between an assembly of N two-level atoms and a classical electromagnetic field can
then be written as

.HA = h̄
∑

i

�iσ
i
z + h̄

∑

k

ωk〈a†kak〉 + h̄
∑

i,k

(gikσ
i+〈ak〉 + g∗

ikσ
i−〈a†k 〉) (6.1)

= h̄
∑

i

�iσ
i
z + h̄

∑

i

(λi(t)σ
i+ + λ∗

i (t)σ
i−),

where the constant energy term .h̄
∑

k ωk〈a†kak〉 is omitted in .HA and .σ i+, .σ i−, and
.σ i

z are the single-atomic operators which obey the conventional angular momentum

commutation relations .[σ i
z , σ

j
±] = ±σ i±δij and .[σ i+, σ

j
−] = 2σ i

z δij . In particular,
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for the case that .λi(t) = λ(t) and .�i = �, we may introduce the many-atomic
operators .Jz ≡∑i σ i

z and .J± ≡∑i σ i±, so that

.HA = h̄�Jz + h̄λ(t)J+ + h̄λ∗(t)J−, (6.2)

where .Jz, .J+, and .J− satisfy the conventional angular momentum commutation
relations .[Jz, J±] = ±J± and .[J+, J−] = 2Jz and the Hamiltonian 6.2 describes
a collective pseudo-spin with quantum number .j = N/2. In the absence of
driving field, the free atoms are described by the Hamiltonian .H0 = h̄�Jz.
The eigenstates of .H0 are the angular momentum eigenstates .|jm〉 which satisfy
.H0|jm〉 = mh̄�|jm〉. Among the angular momentum eigenstates, the state .|jm〉
with .m = −j has the lowest energy, .H0|j − j 〉 = −j h̄�|j − j 〉. When we apply a
classical electromagnetic field to an assembly of atoms, the equation of motion for
the atomic system becomes .ih̄∂t |ψ(t)〉 = (h̄�Jz + h̄λ(t)J+ + h̄λ∗(t)J−)|ψ(t)〉. In
the interaction picture, the collective pseudo-spin Hamiltonian takes on the form

.HI ≡ eiH0t/h̄(h̄λ(t)J+ + h̄λ∗(t)J−)eiH0t/h̄ (6.3)

= h̄λ(t)ei�tJ+ + h̄λ∗(t)e−i�tJ−,

and the equation of motion for the atomic system in the interaction picture
becomes .ih̄∂t |ψI (t)〉 = (h̄λ(t)ei�tJ+ + h̄λ∗(t)e−i�tJ−)|ψI (t)〉, where .|ψI (t)〉 ≡
eiH0t/h̄|ψ(t)〉 = ei�Jzt |ψ(t)〉. If one prepares the atomic system initially in the
lowest energy state .|j − j 〉, one could obtain .|ψI (t)〉 = eζ(t)J+−ζ ∗(t)J−|j − j 〉,
where .ζ(t) ≡ −iλ(t)ei�t .

Comparing the electromagnetic field coherent states .|α〉 obtained from the
vacuum state .|0〉 by a unitary displacement operator .eαa†−α∗a , one can now define
the spin coherent states .|j, ζ 〉 of an assembly of atoms as the state obtained from the
lowest energy state .|j − j 〉 by a unitary operator .eζJ+−ζ ∗J− , where .ζ is in general a
time-dependent complex number.

One can expand the spin coherent states .|j, ζ 〉 in terms of the angular momentum
eigenstates .|jm〉. Using the disentangling theorem for the angular momentum
operators, the unitary operator .eζJ+−ζ ∗J− can be written as .eτJ+eln(1+|τ |2)Jze−τ∗J− ,
where .τ ≡ tan |ζ |ei arg ζ . Hence, one obtains

.|j, ζ 〉 ≡ eζJ+−ζ ∗J−|j − j 〉 (6.4)

= eτJ+eln(1+|τ |2)Jze−τ∗J−|j − j 〉
= (1 + |τ |2)−j eτJ+|j − j 〉

= (1 + |τ |2)−j

j∑

m=−j

(τJ+)j+m

(j + m)! |j − j 〉

= (1 + |τ |2)−j

j∑

m=−j

√(
2j

j + m

)
τ j+m|jm〉,



6.1 Spin Coherent States in Quantum Optics 109

by using the formula

.|jm〉 =
√

(j − m)!
(2j)!(j + m)!J

j+m
+ |j − j 〉 (6.5)

in the last step, where .
( 2j
j+m

)
is the binomial coefficient.

In analogy to the relationship between electromagnetic field coherent states and
points on the complex plane, there also is a one-to-one correspondence between spin
coherent states and points on the two-dimensional unit sphere, which is commonly
known as the Bloch representation, or Bloch sphere (see Fig. 6.1). To establish
the Bloch representation of spin coherent states, one can write the unitary operator
.eζJ+−ζ ∗J− as .Rθ,φ = e−iθJ·n̂ = e−iθ(Jx sinφ−Jy cosφ), where .J± ≡ Jx ± iJy ,
.n̂ = (sinφ,− cosφ, 0), and .ζ ≡ 1

2θe−iφ . Visually, the spin coherent states can be
obtained from a rotation of the lowest energy state .|j − j 〉 through an angle .θ about
the .n̂-axis. In other words, the spin coherent states .|j, ζ 〉 can also be represented
as .|θ, φ〉 ≡ Rθ,φ |j − j 〉. As .|j − j 〉 is the common eigenstate of .J 2 and .Jz, the
spin coherent state .|θ, φ〉 is the common eigenstate of the spin operators .J 2 and
.Rθ,φJzR

−1
θ,φ = −Jk sin θ + Jz cos θ :

.(−Jk sin θ + Jz cos θ)|θ, φ〉 = −j |θ, φ〉 and J 2|θ, φ〉 = j (j + 1)|θ, φ〉, (6.6)

where .Jk ≡ Jx cosφ + Jy sinφ. Hence, the spin coherent state .|θ, φ〉 is simply the
eigenstate of the spin operator .J ·R̂, where .R̂ ≡ − sin θ cosφx̂−sin θ sinφŷ+sin θ ẑ
is a unit vector pointing in the direction of .(π + θ, φ) on the Bloch sphere. Now,

Fig. 6.1 Bloch representation of spin coherent states. The spin coherent state .|θ, φ〉 is obtained
from a rotation of the lowest energy state .|j − j〉 through an angle .θ about the .n̂-axis, where
.n̂ ≡ (sinφ,− cosφ, 0) and .|j − j〉 is represented by the north pole. Hence, the spin coherent
state .|θ, φ〉 corresponds one to one to a point .(θ, φ) on the Bloch sphere, which is the inverse
stereographic projection from .τ ≡ tan θ

2 e−iφ on the complex-.τ plane onto the Bloch sphere
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substitution of .ζ = 1
2θe−iφ into Eq. (6.4) yields .τ = tan θ

2 e−iφ and

.|θ, φ〉 = (1 + |τ |2)−j

j∑

m=−j

τ j+m

√(
2j

j + m

)
|jm〉 (6.7)

=
j∑

m=−j

√(
2j

j + m

)(
cos

θ

2

)j−m (
sin

θ

2
e−iφ

)j+m

|jm〉.

Finally, as we have previously discussed, if an assembly of atoms is initially
prepared in the lowest energy state, the state of the collective pseudo-spin of the
atoms in the interaction picture .|ψI (t)〉 is a spin coherent state .|j, ζ(t)〉, where
.ζ(t) ≡ −iλ(t)ei�t . Hence, a direct computation yields

.θ(t) = 2|λ(t)| and φ(t) = π/2 − arg λ(t) − �t. (6.8)

Using the formula .|ψI (t)〉 = ei�Jzt |ψ(t)〉 and Eq. (6.7), we obtain

.|ψ(t)〉 = e−i�Jzt |θ(t), φ(t)〉 = |θ(t), φ(t) + �t〉eij�t , (6.9)

Clearly, as long as the atomic system is initially prepared in the lowest energy
state .|j − j 〉, the state of the collective pseudo-spin of the atoms to within a time-
dependent phase factor will always be a spin coherent state.

In the above, we demonstrated that a spin coherent state .|j, ζ 〉 for an assembly of
atoms can be generated in a similar way as the coherent states for an electromagnetic
field, from the lowest energy state .|j,−j 〉 by the application of the displacement
operator .eζJ+−ζ ∗J− . However, unlike the electromagnetic field coherent states, the
spin coherent state .|j, ζ 〉 is not an eigenstate of the lowering operator .J−, but instead
from Eq. (6.4); it satisfies

.J−|j, ζ 〉 = τ

(1 + |τ |2)j
j−1∑

m=−j

√(
2j

j + m

)
(j − m)τj+m|jm〉, (6.10)

where .τ ≡ tan |ζ |ei arg ζ . One can easily derive the expectation value of .J−

.〈j, ζ |J−|j, ζ 〉 = τ

(1 + |τ |2)2j
j−1∑

m=−j

(
2j

j + m

)
(j − m)(|τ |2)j+m (6.11)

= 2jτ

(1 + |τ |2)2j
j−1∑

m=−j

(
2j − 1

j + m

)
(|τ |2)j+m

= 2jτ

1 + |τ |2 ,
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and similarly the expectation values of .J+ and .Jz

.〈j, ζ |J+|j, ζ 〉 = 2jτ ∗

1 + |τ |2 , . (6.12a)

〈j, ζ |Jz|j, ζ 〉 = j (|τ |2 − 1)

1 + |τ |2 . (6.12b)

The expectation values of .Jx , .Jy , and .Jz in the Bloch sphere representation of spin
coherent states are then given by

.〈θ, φ|Jx |θ, φ〉 = j sin θ cosφ, . (6.13a)

〈θ, φ|Jy |θ, φ〉 = j sin θ sinφ, . (6.13b)

〈θ, φ|Jz|θ, φ〉 = −j cos θ. (6.13c)

One of the intriguing properties of the field coherent states is that they are
necessarily all minimum uncertainty states which satisfy Heisenberg’s uncertainty
relation .�x�p = 1/2. For general spin states, a similar uncertainty relation exists,
.�Jx�Jy ≥ 1

2 |〈Jz〉|. Hence, one can ask whether the spin coherent states satisfy this
uncertainty relation for the spin operators. To this end, one notices that in the Bloch
sphere representation of spin coherent states, the expectations values of .J 2

x and .J 2
y

are

.〈θ, φ|J 2
x |θ, φ〉 = j

2
+ j (2j − 1)

2
(sin θ cosφ)2, . (6.14a)

〈θ, φ|J 2
y |θ, φ〉 = j

2
+ j (2j − 1)

2
(sin θ sinφ)2. (6.14b)

Comparison between Eqs. (6.13a)–(6.13b) and Eqs. (6.14a)–(6.14b) yields

.�J 2
x ≡ 〈θ, φ|J 2

x |θ, φ〉 − 〈θ, φ|Jx |θ, φ〉2 = j

2

[
1 − (sin θ cosφ)2

]
, . (6.15a)

�J 2
y ≡ 〈θ, φ|J 2

y |θ, φ〉 − 〈θ, φ|Jy |θ, φ〉2 = j

2

[
1 − (sin θ sinφ)2

]
. (6.15b)

Hence, we obtain .�J 2
x �J 2

y − 1
4 |〈θ, φ|Jz|θ, φ〉|2 = 1

4j
2 sin4 θ cos2 φ sin2 φ, which

vanishes only when .θ = 0, or .φ = nπ/2, where n is an arbitrary integer. In
other words, unlike the field coherent states, which satisfy Heisenberg’s uncertainty
relation without any condition, the spin coherent state .|j, ζ 〉 satisfies the uncertainty
relation .�Jx�Jy ≥ 1

2 |〈Jz〉| only when .ζ = 1
2θe−iφ is real or purely imaginary.

As we have shown in the last chapter, any two field coherent states are strictly
non-orthogonal in the sense that their scalar product never vanishes. But for two
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spin coherent states .|j, ζ 〉 and .|j, ζ ′〉, we have

.〈j, ζ |j, ζ ′〉 = 1

(1 + |τ |2)j (1 + |τ ′|2)j
j∑

m=−j

(
2j

j + m

)
(τ ∗τ ′)j+m (6.16)

= (1 + τ ∗τ ′)2j

(1 + |τ |2)j (1 + |τ ′|2)j ,

which implies that the two states .|j, ζ 〉 and .|j, ζ ′〉 are orthogonal when .τ ′ = −1/τ ∗.
In other words, there is only one single point on the Bloch sphere representing
the orthogonal state of a given spin coherent state, which is the antipodal point
.(θ ′, φ′) = (π − θ, π + φ). Substitution of .τ ′ = tan θ ′

2 e−iφ′
and .τ = tan θ

2 e−iφ into
Eq. (6.16) yields

.|〈j, ζ |j, ζ ′〉| =
∣∣∣∣cos

θ ′

2
cos

θ

2
+ sin

θ ′

2
sin

θ

2
e−i(φ′−φ)

∣∣∣∣
2j

(6.17)

=
{
1

2

[
1 + cos θ ′ cos θ + sin θ ′ sin θ cos(φ′ − φ)

]}j

= cos2j
(

�

2

)
,

where .� is the angle between the two vectors .(θ ′, φ′) and .(θ, φ) on the Bloch
sphere. With the above discussions, we see clearly that two spin coherent states
.|j, ζ 〉 and .|j, ζ ′〉 are orthogonal only when .� = π , that is, .(θ ′, φ′) is the antipodal
direction of .(θ, φ). We also note that, for large quantum number j , the overlap
between two spin coherent states can be very small, even when .� � 1. Hence, in
the large-j limit, different spin coherent states are well-separated. They have small
overlap and tend to approximately orthogonal to one another.

We now further examine the completeness properties of the spin coherent states.
One may show that the identity operator can be resolved with respect to the spin
coherent states. Using Eq. (6.7), one obtains

.
1

4π

∫
d�|θ, φ〉〈θ, φ| (6.18)

= 1

4π

∫
d�

j∑

m′=−j

j∑

m=−j

ei(m′−m)φ

√(
2j

j + m

)√(
2j

j + m′

)

(
cos

θ

2

)2j−m′−m (
sin

θ

2

)2j+m′+m

|jm′〉〈jm|.

where .d� = sin θdθdφ is the differential solid angle in spherical coordinates. Using
the integral .

∫ 2π
0 ei(m−m′)φdφ = 2πδmm′ , and performing a change of variable .s =
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sin2 θ
2 , Eq. (6.18) becomes

.
1

4π

∫
d�|θ, φ〉〈θ, φ| (6.19)

=
∫ π

0

sin θ

2
dθ

j∑

m=−j

(
2j

j + m

)(
cos2

θ

2

)j−m (
sin2

θ

2

)j+m

|jm〉〈jm|

=
∫ 1

0
ds

j∑

m=−j

(
2j

j + m

)
sj+m(1 − s)j−m|jm〉〈jm|

=
j∑

m=−j

(
2j

j + m

)
(j + m)!(j − m)!

(2j + 1)! |jm〉〈jm|

= 1

2j + 1

j∑

m=−j

|jm〉〈jm|.

Using the completeness properties of the angular momentum eigenstates, the
identity operator is resolved in terms of the spin coherent states

.
2j + 1

4π

∫
d�|θ, φ〉〈θ, φ| =

j∑

m=−j

|jm〉〈jm| = I2j+1. (6.20)

Hence, a general spin state .|ψ〉 can always be expanded in terms of the spin coherent
states as

.|ψ〉 =
j∑

m=−j

cm|jm〉 = 2j + 1

4π

∫
d�

j∑

m=−j

|j, ζ 〉〈j, ζ |jm〉 (6.21)

= 2j + 1

4π

∫
d�

f (τ ∗)
(1 + |τ |2)j |j, ζ 〉,

where .f (τ ∗) ≡ (1 + |τ |2)j 〈j, ζ |ψ〉 = ∑j
m=−j cm

( 2j
j+m

)1/2
(τ ∗)j+m is the spin

coherent state representation of .|ψ〉 and is a polynomial of .τ ∗ of degree 2j .

6.2 Geometric Phases for Spin Coherent States

In the last section, we discussed some basic properties of spin coherent states. In
the following, we will use these properties to introduce the important concept of
geometric phases for spin coherent states.
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The concept of geometric phases was first introduced by Michael Berry in his
paper of 1984 titled “Quantal phase factors accompanying adiabatic changes” [80],
in which he showed that a quantum state undergoing cyclic adiabatic evolution
will accumulate a geometric phase factor in addition to the conventional dynamical
phase factor, which depends only on the contour accompanying adiabatic changes
in the parameter space. Berry’s phase for cyclic adiabatic changes of parameters
was soon used to provide an elegant explanation of the integer quantization of
Hall conductance. The assumption of adiabatic changes was later removed by Yakir
Aharonov and Jeeva Anandan in their paper titled “Phase change during a cyclic
quantum evolution” [81] published in 1987. In particular, for spin coherent states,
as we will show below, the geometric phase equals to the solid angle subtended by
the tip of the spin on Bloch sphere multiplied by the spin quantum number.

We now introduce Aharonov and Anandan’s geometric phase in more detail. Let
.|ψ(t)〉 be a quantum state undergoing cyclic evolution, and then the initial and final
states are related by .|ψ(T )〉 = ei�|ψ(0)〉, where .� is the total phase associated
with the cyclic evolution of .|ψ(t)〉. To evaluate .�, we set .|ψ(t)〉 ≡ eif (t)|φ(t)〉
with .f (T ) − f (0) ≡ �. It follows that .|φ(t)〉 undergoes a periodic motion with
.|φ(T )〉 = |φ(0)〉. Substituting .|ψ(t)〉 ≡ eif (t)|φ(t)〉 into the Schrödinger equation
of .|ψ(t)〉, we obtain

. − ḟ = h̄−1〈ψ(t)|Ĥ |ψ(t)〉 − i〈φ(t)|φ̇(t)〉. (6.22)

After integration, the initial and final states are found to be related by

.|ψ(T )〉 = exp

{
− i

h̄

∫ T

0
〈ψ |Ĥ |ψ〉dt

}
exp

{
−
∫ T

0
〈φ|φ̇〉dt

}
|ψ(0)〉, (6.23)

where the first exponential is the conventional dynamical phase factor and the
second exponential is a geometric phase factor which only depends on the closed
trajectory swept out by .|φ〉 in the Hilbert space.

As we shall see, the meaning of the geometric phase factor will be clearer
by considering spin coherent states. Using the definition of spin coherent states,
.|j, ζ 〉 = (1 + |τ |2)−j eτJ+|j − j 〉, a direct computation yields

.
d

dt
|j, ζ 〉 =

(−j (τ ∗τ̇ + τ τ̇ ∗)
1 + |τ |2 + τ̇ J+

)
|j, ζ 〉. (6.24)

Using Eq. (6.12a), we obtain

.〈j, ζ | d

dt
|j, ζ 〉 = −j (τ ∗τ̇ + τ τ̇ ∗)

1 + |τ |2 + 2jτ ∗τ̇
1 + |τ |2 = j (τ ∗τ̇ − τ τ̇ ∗)

1 + |τ |2 . (6.25)
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Using the relation .τ = tan θ
2 e−iφ , the geometric phase factor becomes

.eiγ ≡ exp

{
−j

∫ T

0

τ ∗τ̇ − τ τ̇ ∗

1 + |τ |2 dt

}
= exp

{
ij

∫

C

(1 − cos θ)dφ

}
, (6.26)

where C is the contour traced by the spin on the Bloch sphere. Equation (6.26)
shows that the geometric phase .γ for spin coherent states equals to the spin quantum
number j times the solid angle .�(C) ≡ ∫

C
(1 − cos θ)dφ enclosed by the spin

trajectory on the Bloch sphere.
We now proceed to the geometric phases for a superposition of two spin coherent

states, .|φ〉 = c1|j, ζ1〉 + c2|j, ζ2〉. A direct computation yields

.〈φ|φ̇〉 =
∑

i

|ci |2〈j, ζi | d

dt
|j, ζi〉 + c∗

1c2
d

dt
(〈j, ζ1|j, ζ2〉) (6.27)

+ 2i�[c∗
2c1〈j, ζ2|

d

dt
|j, ζ1〉],

where the first term in Eq. (6.27) is contributed from the trajectories of the individual
spin coherent states on Bloch sphere, the second term is a total derivative which
vanishes after integration over a whole period, and the third term is contributed
from the interference between the spin coherent states .|j, ζ1〉 and .|j, ζ2〉. Using
Eqs. (6.10) and (6.16), we obtain

.〈j, ζ2| d

dt
|j, ζ1〉 = −j (τ ∗

1 τ̇1 + τ1τ̇
∗
1 )

1 + |τ1|2 〈j, ζ2|j, ζ1〉 + τ̇1〈j, ζ2|J+|j, ζ1〉 (6.28)

=
(−j (τ ∗

1 τ̇1 + τ1τ̇
∗
1 )

1 + |τ1|2 + 2jτ ∗
2 τ̇1

1 + τ ∗
2 τ1

)
〈j, ζ2|j, ζ1〉.

From Eqs. (6.27) and (6.28), we see that when two spin coherent states .|j, ζ1〉 and
.|j, ζ2〉 are orthogonal, the geometric phase for their superposition simply equals
to the summation of the solid angles subtended by the individual spin coherent
state trajectories on the Bloch sphere multiplied by the spin quantum number,
.γ ≡ i

∫ T

0 〈φ|φ̇〉dt = j
∑

i |ci |2�(Ci). For the general case, using the relations

.τi ≡ tan θi

2 e−iφi and .〈j, ζ2|j, ζ1〉 = cos �
2 eiA, we obtain

.〈j, ζ2| d

dt
|j, ζ1〉 = j

(
cos

�

2
e

iA
2

)2j−1 [
sin

�

2
e

iA′
2 dθ1 (6.29)

−2i sin
θ1

2
sin

θ2

2
ei(φ2−φ1)dφ1

]
,

where .� is the angle between the two vectors .(θ1, φ1) and .(θ2, φ2) on the Bloch
sphere; A is the area of the spherical triangle with points .(θ1, φ1), .(θ2, φ2), and the
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north pole; and .A′ is the area of the spherical triangle with points .(π − θ1, π + φ1),
.(θ2, φ2), and the north pole. For a superposition of two spin coherent states with
opposite amplitudes, .|φ〉 = c1|j, ζ1〉 + c2|j,−ζ1〉, we have .A = A′ = 0 and .� =
2θ1. Hence, the geometric phase for .|φ〉 becomes

.γ = j
∑

i

|ci |2�(Ci) − 2j�(c∗
2c1)

∫

C1

(
cos

�

2

)2j−1

d�1, (6.30)

where .d�1 = (1 − cos θ1)dφ1 is the differential solid angle subtended by the
vector .(θ1, φ1) on the Bloch sphere. From Eq. (6.30), we notice that the geometric
phase for a superposition of spin coherent states with opposite amplitudes equals
to the summation of solid angles subtended by the individual spin coherent state
trajectories plus an additional solid angle weighted by the spherical distance
between their Bloch representations.

6.3 Spin Cat States

Over the last three decades, there has been a steady growth of interest in the
generation of different kinds of quantum states that consist of a superposition of
macroscopic distinct states, which are known as the Schrödinger cat states. These
states reveal the unique peculiar aspect of quantum mechanics—the preparation
of a state smeared over two and more distinct values is feasible but is very
unlikely to happen at the classical level. Thus, the preparation and manipulation
of such superposition states are of fundamental importance and will enhance our
understanding of the foundations of quantum mechanics. In Chap. 3, we have
already discussed some properties of the Schrödinger cat states in quantum optics
which consist of superpositions of two distinct field coherent states with opposite
amplitudes. In the following, we will discuss another kind of cat states—the
superposition of spin coherent states which involves an assembly of atoms.

An experimental proposal for the generation of spin cat states was first presented
by J. I. Cirac and P. Zoller in a seminal paper titled “Preparation of macroscopic
superpositions in many-atom systems” [82] published in 1994. It is based on the
interaction between the atoms and a cavity mode. The Cirac-Zoller proposal on
generating spin cat states by using cavity quantum electrodynamics was later refined
in the published papers [83–85].

To begin, let us consider a collection of N two-level atoms with a transition
frequency .ωa confined to a cavity which supports a single mode of quantized
electromagnetic field of frequency .ωc. We introduce the many-atomic operators
.J± ≡ ∑N

i=1 σ
(i)
± and .Jz ≡ 1

2

∑N
i=1 σ

(i)
z as in Chap. 6, where .σ

(i)
± and .σ

(i)
z are

the Pauli operators for a single atom. The many-atomic operators obey the usual
angular momentum commutation relations: .[J+, J−] = 2Jz and .[Jz, J±] = ±J±.
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The atom-field interaction is described by

.H = h̄ωca
†a + h̄ωa

2
Jz + h̄g(a†J− + aJ+). (6.31)

The Hamiltonian (6.31) describes the exchange of energy between the internal states
of the atoms in a cavity and the photon confined to the cavity and is commonly
known as the Jaynes-Cummings Hamiltonian [86–88], where g is the atom-field
coupling constant proportional to the dipole moment of the atoms. In the dispersive
regime where the atomic transition frequency is far out of resonance with the
cavity field, we may assume that the detuning .� ≡ ωa − ωc is much larger than
the atom-field coupling constant g. Under this assumption, the Jaynes-Cummings
Hamiltonian can be approximately diagonalized using a unitary transformation
.H ′ = UHU†, where .U = exp

[ g
�

(aJ+ − a†J−)
]
. After expanding to second order

in g, we obtain the effective Hamiltonian in the dispersive regime [89, 90]

.H ′ = h̄ (ωc + χJz) a†a + h̄

2
(ωa + χ) Jz, (6.32)

where .χ ≡ g2/� is the dispersive coupling constant. From Eq. (6.32), we see that
the atomic transition frequency is shifted by .χ , known as the Lamb shift, and the
cavity frequency is shifted by .χm, depending on the internal states of the atoms,
and is known as the Stark shift. The linear dispersive approximation is valid only
when .4g2n̄ � �2, i.e., the mean photon number does not exceed the critical value

.nc ≡ �2

4g2
. Let us denote .H ′ = H ′

0 + H ′
1 with .H ′

0 ≡ h̄ωca
†a + h̄

2 (ωa + χ)Jz

and .H ′
1 ≡ h̄χJza

†a. Then we see that the dispersive coupling .H ′
1 commutes with

the atomic and cavity Hamiltonian .H ′
0. Hence, in the interaction picture, the atom-

field interaction .H ′
I ≡ eiH ′

0t/h̄H ′
1e

−iH ′
0t/h̄ still equals to .H ′

1. If the quantized cavity
field is initially prepared in a coherent state, and the atoms are prepared in a spin
coherent state, the initial state .|ψI (t = 0)〉 = |j, ζ 〉|α〉 =∑j

m=−j cm|jm〉|α〉 in the
interaction picture will evolve into the state after time t

.|ψI (t)〉 ≡ e−iH ′
1t/h̄|ψI (t = 0)〉 =

j∑

m=−j

cme−iχmta†a|jm〉|α〉 (6.33)

=
j∑

m=−j

cm|jm〉|αe−iχmt 〉,

where .j ≡ N/2 and .cm ≡ (1 + |τ |2)−j
√( 2j

j+m

)
τ j+m for spin coherent states.

Equation (6.33) shows that the atoms and the cavity mode are entangled through the
dispersive interaction.
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Let us first discuss the case where both j and m are integers. If we stop the
dispersive interaction after time .T ≡ π/χ , the state .|ψI (T )〉 then has the form

.|ψI (T )〉 =
j∑

m=−j

cm|jm〉|(−1)mα〉 (6.34)

= 1

2N+
|j, ζ 〉+|α〉 + 1

2N−
|j, ζ 〉−| − α〉,

where .|j, ζ 〉± ≡ N±(|j, ζ 〉± (−1)j |j,−ζ 〉) are the atomic counterparts of the even
and odd cat states of the harmonic oscillator and hence can be referred to the even
and odd spin cat states. Here, .N± are the normalization factor given by

.N± = 1√
2

[
1 ± (−1)j

(
1 − |τ |2
1 + |τ |2

)2j]−1/2

. (6.35)

Now, the remaining task is to detect the cavity field and projects the atoms into
the corresponding spin coherent states. However, here is a difficulty arising: as the
quantized electromagnetic field is trapped in a low-loss cavity during the entire
operating time to form the cat states, direct access to the field is forbidden, and
one can only infer the properties of the field from the detection of auxiliary atoms
coupled to the field when sent through the cavity. One way to solve the issue is
described by Brune et al. [91]: after the generation of collective spin cat states, the
cavity will be coupled to the same classical radiation source as the one which has
used initially to generate the coherent state .|α〉, so that a reference coherent state
.|αr 〉 is added to the field coherent state in the cavity mode, i.e., .|α〉 → |α + αr 〉
and .| − α〉 → | − α + αr 〉, where the amplitude of the reference coherent states
can be adjusted by varying the interaction time interval. The coupling between the
classical source and the cavity has to be weak enough to ensure low cavity losses.
This field amplitude superposition mechanism has already emphasized by Glauber
in his remarkable paper titled “Coherent and Incoherent States of the Radiation
Field” [4]. In his original words, he wrote that: “The amplitudes of successive
coherent excitations of the mode add as complex numbers in quantum theory, just
as they do in classical theory.” To this end, let us choose .αr = α, and then after the
superposition, the entangled atomic-field state becomes

.|ψ ′
I (T )〉 = 1

2N+
|j, ζ 〉+|2α〉 + 1

2N−
|j, ζ 〉−|0〉. (6.36)

Now, the quantized cavity field is in a superposition of the vacuum state with a
classical state. In other words, either empty or filled with coherent field, depending
on whether the atoms are in even or odd spin cat states. Finally, we send through the
cavity a reference two-level atom which has an atomic transition frequency resonant
with the cavity field. If we assume the reference atom is in the excited state when it



6.3 Spin Cat States 119

enters the cavity, then according to the Jaynes-Cummings model [86], we obtain

.|ψ ′′
I (T )〉 = 1

2N+
|j, ζ 〉+(|ψg(t)〉|gr〉 + |ψe(t)〉|er〉) + 1

2N−
|j, ζ 〉−|0〉|gr〉,

(6.37)

where .|gr〉 and .|er 〉 are the ground and excited states of the reference atom
respectively, t is the interaction time, and

.|ψg(t)〉 = −i

∞∑

n=0

Cn(2α) sin(λt
√

n + 1)|n + 1〉, . (6.38a)

|ψe(t)〉 =
∞∑

n=0

Cn(2α) cos(λt
√

n + 1)|n〉, (6.38b)

where .Cn(z) ≡ e− |z|2
2 zn/

√
n!. Hence, the detection of the reference atom in the

excited state reduces the collective atomic state into the even spin cat state .|j, ζ 〉+.
Similarly, if one were to choose the amplitude of the reference coherent state as
.αr = −α, one will obtain the odd spin cat state .|j, ζ 〉−, provided that the reference
atom is detected in the excited state.

In the above, we have discussed a simple experimental scheme for the generation
of Schrödinger cat states for an assembly of two-level atoms based on dispersive
interaction between the atoms and the field in a low-loss cavity along with state
reduction. In the following, we will discuss in detail the intriguing properties for
these states by use of quasi-probability distributions such as the Husimi Q- and the
Wigner functions [92, 93].

We first discuss the Husimi Q-distribution .Q(θ, φ) ≡ 2j+1
4π |〈θ, φ|j, ζ 〉±|2 for

even and odd spin cat states .|j, ζ 〉± ≡ N±(|j, ζ 〉 ± (−1)j |j,−ζ 〉), where .N± is
a normalization constant given by Eq. (6.35) and the Q-function is normalized as
.
∫

Q(θ, φ) sin θdθdφ = 1. A direct computation yields

.Q(θ, φ) = 2j + 1

4π
N2±(|〈θ, φ|j, ζ 〉|2 ± (−1)j 〈θ, φ|j,−ζ 〉〈j, ζ |θ, φ〉 (6.39)

± (−1)j 〈θ, φ|j, ζ 〉〈j,−ζ |θ, φ〉 + (−1)2j |〈θ, φ|j,−ζ 〉|2).

Without loss of generality, we could assume .ζ = β/2, so that .N2± = 1
2 [1 ±

(− cos2 β)j ]−1. Using Eqs. (6.16) and (6.17), we obtain

.〈θ, φ|j,±ζ 〉〈j,∓ζ |θ, φ〉 =
{
1

2
(cosβ + cos θ ± i sinβ sin θ sinφ)

}2j
, .

(6.40a)
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|〈θ, φ|j,±ζ 〉|2 =
{
1

2
(1 + cosβ cos θ ± sinβ sin θ cosφ)

}2j
.

(6.40b)

In particular, for .β = π/2, we have .N2± = 1/2, and hence the Q-function for even
and odd spin cat states can be explicitly written as [85]

.Q(θ, φ) = 2j + 1

4π

1

2N+1
{(sin θ cosφ + 1)N + (sin θ cosφ − 1)N (6.41)

± (−1)N/2[(cos θ + i sin θ sinφ)N + (cos θ − i sin θ sinφ)N ]},

where .N = 2j is the number of atoms. In Eq. (6.41), the first two terms are
the contributions from the two spin coherent states, respectively, and the last two
terms represent the quantum interference between them. The existence of the
quantum interference terms clearly reveals the quantum nature of the spin cat
states. Experimentally, one may obtain the atomic quasi-probability Q-function by
performing a spin-coherent states positive operator-valued measure (POVM) via
a sequence of weak measurements [94]. In Fig. 6.2, we show the spherical polar
plot of the quasi-probability Q-function for even spin cat states with .N = 10 and

Fig. 6.2 Spherical polar plot of the quasi-probability Q-function .Q(θ, φ) ≡ N+1
4π |〈θ, φ|j, ζ 〉+|2

for even spin cat states with .N = 10 and .ζ = π/4, where .x ≡ Q(θ, φ) sin θ cosφ, .y ≡
Q(θ, φ) sin θ sinφ, and .z ≡ Q(θ, φ) cos θ
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.β = π/2, i.e., a unit sphere deforms into the isosurface of the quasi-probability Q-
function. As the Q-function is non-negative and real, the nonclassical properties
of the spin cat states is manifested by those values of .Q(θ, φ) that approaches
zero, or equivalently by those regions of sphere which dramatically shrink to the
origin. In Fig. 6.2, the quantum nature of the spin cat states is clearly seen from
the dumbbell-like shape in the quasi-probability distribution .Q(θ, φ). Let us denote
.Q0(θ, φ) ≡ 2j+1

4π N2±(|〈θ, φ|j, ζ 〉|2 + (−1)N |〈θ, φ|j,−ζ 〉|2) as the summation of
the Q-functions for the spin coherent states .|j, ζ 〉 and .|j,−ζ 〉, which corresponds
to the contribution to .Q(θ, φ) without quantum interferences. In Fig. 6.3, we show
the spherical polar plot of the ratio .η(θ, φ) ≡ Q(θ, φ)/Q0(θ, φ) for even spin cat
states with .N = 10 and .β = π/2. The delicate quantum interference structure in
the quasi-probability distribution .Q(θ, φ) is clearly displayed in the decagram-like
shape ratio between .Q(θ, φ) and .Q0(θ, φ), where there are well-separated humps
and hollows on the surface of the unit sphere.

Fig. 6.3 Spherical polar plot of the ratio .η(θ, φ) between .Q(θ, φ) and .Q0(θ, φ) for even spin cat
states with .N = 10 and .ζ = π/4, where .x ≡ η(θ, φ) sin θ cosφ, .y ≡ η(θ, φ) sin θ sinφ, and
.z ≡ η(θ, φ) cos θ
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We now discuss an equally important quasi-probability distribution—the Wigner
distribution—for spin cat states. The Wigner function .W(θ, φ) for an arbitrary
density operator .ρ may be expanded in terms of the spherical harmonics .Ykq(θ, φ)

.W(θ, φ) ≡
√

N + 1

4π

N∑

k=0

k∑

q=−k

ρkqYkq(θ, φ), (6.42)

where .N = 2j is the number of atoms, .ρkq ≡ Tr(T †
kqρ) are the characteristic

matrices of .ρ, and .Tkq are the spherical tensor operators defined by [95]

.Tkq ≡
j∑

m,m′=−j

(−1)j−m
√
2k + 1

(
j k j

−m q m′
)

|jm〉〈jm′|, (6.43)

where .

(
j k j

−m q m′
)

is the Wigner 3j -symbol. For even and odd spin cat states

.|j, ζ 〉± ≡ N±(|j, ζ 〉 ± (−1)j |j,−ζ 〉), we have .ρ = N2±[|j, ζ 〉〈j, ζ 〉 ±
(−1)j |j, ζ 〉〈j,−ζ 〉 ± (−1)j |j,−ζ 〉〈j, ζ 〉 + (−1)2j |j,−ζ 〉〈j,−ζ |]. Similar to
the previous case, we may choose .ζ = β/2, so that .N2± = 1

2 [1 ± (− cos2 β)j ]−1.
Then a direct computation shows that

.ρkq =N2±
j∑

m,m′=−j

(−1)j−m[1 ± (−1)N+m′ ± (−1)N+m + (−1)m+m′ ] (6.44)

√
2k + 1

(
j k j

−m q m′
)√(

N

j + m

)√(
N

j + m′

)

(
cos

β

2

)N−m−m′ (
sin

β

2

)N+m+m′

.

Substituting Eq. (6.44) into Eq. (6.42), we immediately obtain the Wigner
quasipropability distribution for the even and odd spin cat states

.W(θ, φ) =
√

N + 1

4π

N∑

k=0

k∑

q=−k

j∑

m=−j

√
2k + 1N !(−1)j

2[1 ± (− cos2 β)j ] (6.45)

[(−1)m ± (−1)q ][1 ± (−1)m]√
(j + m)!(j − m)!(j + m − q)!(j − m + q)!

(
j k j

−m q m − q

)

(
cos

β

2

)2(j−m)+q (
sin

β

2

)2(j+m)−q

Ykq(θ, φ),
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where we have used the fact that the Wigner 3j -symbol .
(

j1 j2 j3
m1 m2 m3

)
vanishes when

.m1 + m2 + m3 = 0. In particular, for .β = π , we have .ρ = 1
2 (|jj 〉〈jj | ±

(−1)j |jj 〉〈j − j | ± (−1)j |j − j 〉〈jj | + (−1)N |j − j 〉〈j − j |), which yields

.ρkq = 1

2

{
[1 + (−1)N+k]√2k + 1N !δq,0√

(N + k + 1)!(N − k)! . (6.46a)

±(−1)j [δq,N + (−1)Nδq,−N ]δk,N

}
,

W(θ, φ) = 1

2

√
N + 1

4π

{
N∑

k=0

[1 + (−1)N+k]√2k + 1N !√
(N + k + 1)!(N − k)! Yk0(θ, φ) (6.46b)

±(−1)j [YNN(θ, φ) + (−1)NYN−N(θ, φ)]
}

.

In Fig. 6.4, we show the spherical polar plot of the quasi-probabilityWigner function
for even spin cat states with .N = 4 and .β = π . The top and bottom bumps on the
sphere correspond to the statistical mixture of the two spin coherent states, for which
quantum interference effects are absent, while the humps and hollows on the equator
correspond to the interference effects between the two spin coherent states and the
number of humps or hollows equals to the number of atoms.

Exercises

6.1. Verify Eq. (6.3) by using the formula

.eABe−A = B + [A,B] + 1

2! [A, [A,B]] + 1

3! [A, [A, [A,B]]] + · · · .

6.2. Prove the disentangling theorem for the quantum angular momentum operators

.eζJ+−ζ ∗J− = eτJ+eln(1+|τ |2)Jze−τ∗J− ,

where τ ≡ tan |ζ |ei arg ζ . (Hint: The 2 × 2 matrix representations of the angular
momentum operators J+, J− and Jz may help.)

6.3. Verify Eq. (6.5) by using the formula

.J+|jm〉 = √(j − m)(j + m + 1)|jm + 1〉.
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Fig. 6.4 Wigner distribution .W(θ, φ) for even spin cat state with .N = 4 and .ζ = π/2, where
.x ≡ W(θ, φ) sin θ cosφ, .y ≡ W(θ, φ) sin θ sinφ, and .z ≡ W(θ, φ) cos θ

6.4. Prove the following relations

.Rθ,φJnR
−1
θ,φ = Jn,

Rθ,φJkR
−1
θ,φ = Jk cos θ + Jz sin θ,

Rθ,φJzR
−1
θ,φ = −Jk sin θ + Jz cos θ,

where Jn ≡ Jx sinφ − Jy cosφ and Jk = Jx cosφ + Jy sinφ.

6.5. By using the results from Exercise 6.4, verify Eq. (6.6).
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6.6. From Eq. (6.4), show that the expectation values of Jx , Jy , and Jz are

.〈j, ζ |Jx |j, ζ 〉 = 2j�τ

1 + |τ |2 ,

〈j, ζ |Jy |j, ζ 〉 = −2j�τ

1 + |τ |2 ,

〈j, ζ |Jz|j, ζ 〉 = j (|τ |2 − 1)

1 + |τ |2 .

6.7. By using the results from Exercise 6.6, show that

.〈θ, φ|Jx |θ, φ〉 = j sin θ cosφ,

〈θ, φ|Jy |θ, φ〉 = j sin θ sinφ,

〈θ, φ|Jz|θ, φ〉 = −j cos θ.

6.8. Using the resolution of identity formula, Eq. (6.20), show that

.〈θ, φ|J 2
x |θ, φ〉 = j

2
+ j (2j − 1)

2
(sin θ cosφ)2,

〈θ, φ|J 2
y |θ, φ〉 = j

2
+ j (2j − 1)

2
(sin θ sinφ)2.

6.9. Let A and B be two non-commuting Hermitian operators and |ψ〉 be a general
quantum state; prove Schrödinger’s uncertainty relation

.�A2�B2 ≥ |C(A,B)|2 + 1

4
|〈ψ |[A,B]|ψ〉|2 ,

where �A2 ≡ 〈ψ |A2|ψ〉 − 〈ψ |A|ψ〉2 is the variance of the operator A and
C(A,B) ≡ 1

2 〈ψ |{A,B}|ψ〉−〈ψ |A|ψ〉〈ψ |B|ψ〉 is the covariance between the oper-
ators A and B. When the covariance C(A,B) vanishes, Schrödinger’s uncertainty
relation becomes Robertson’s uncertainty relation, �A2�B2 ≥ 1

4 |〈ψ |[A,B]|ψ〉|2.
(Hint: Use Schwartz’s inequality.)

6.10. Verify the relation 〈j, ζ2|j, ζ1〉 = cos �
2 eiA, where � is the angle between

the vectors (θ1, φ1) and (θ2, φ2) on the Bloch sphere and A is the area of a spherical
triangle with points (θ1, φ1), (θ2, φ2) and the north pole.
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6.11. Verify Eq. (6.32) by using the operator expansion theorem

.esABe−sA = B + s[A,B] + s2

2! [A, [A,B]] + ....

6.12. Verify Eqs. (6.38a) and (6.38b) by using the Jaynes-Cummings Hamilto-
nian (6.31).

6.13. The Wigner 3j -symbol vanishes if either of the conditions |j1 − j2| ≤ j3 ≤
j1 + j2, |mi | ≤ ji , or m1 + m2 + m3 = 0 is not satisfied. When all the conditions
are satisfied, the Wigner 3j -symbol can be expressed as a finite sum

.

(
j1 j2 j3

m1 m2 m3

)
= (−1)j1−j2−m3�(j1j2j3)(

3∏

i=1

(ji + mi)!(ji − mi)!) 1
2

×
∑

t

(−1)t

t !(t − t1)!(t − t2)!(t + t3)!(t + t4)!(t + t5)! ,

where

.�(j1j2j3) ≡
(

(j1 + j2 − j3)!(j1 − j2 + j3)!(−j1 + j2 + j3)!
(j1 + j2 + j3 + 1)!

) 1
2

,

and tm ≤ t ≤ tM . Here tm ≡ max{0, t1, t2}, tM ≡ min{t3, t4, t5}, and

.t1 ≡ j2 − m1 − j3, t2 ≡ j1 + m2 − j3,

t3 ≡ j1 + j2 − j3, t4 ≡ j1 − m1, t5 ≡ j2 + m2.

By using the above finite sum formula, verify the following relation

.

(
j1 j2 j3

j1 m2 −j1 − m2

)
= (−1)2j1−j2+m2

√
(J + 1)!

×
√

(2j1)!(j2 − m2)!(j3 + j1 + m2)!(−j1 + j2 + j3)!
(j1 + j2 − j3)!(j2 + m2)!(j3 − j2 + j1)!(j3 − j1 − m2)! ,

where J ≡ j1 + j2 + j3. In particular, for j1 = j2, show that

.

(
j1 j1 j3

j1 m2 −j1 − m2

)
= (−1)j1+m2

√
(2j1 + j3 + 1)!

×
√

(2j1)!(j1 − m2)!(j3 + j1 + m2)!
(2j1 − j3)!(j1 + m2)!(j3 − j1 − m2)! .
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6.14. The Wigner 3j -symbol has many symmetry properties, e.g., it is invariant
under an even permutation of its columns

.

(
j1 j2 j3

m1 m2 m3

)
=
(

j3 j1 j2

m3 m1 m2

)
=
(

j2 j3 j1

m2 m3 m1

)
,

and will yield a phase by changing the sign of the m quantum numbers

.

(
j1 j2 j3

m1 m2 m3

)
= (−1)j1+j2+j3

(
j1 j2 j3

−m1 −m2 −m3

)

By using the above symmetry properties, verify the following relations

.

(
j k j

−j 0 j

)
= (2j)!√

(2j + k + 1)!(2j − k)! ,
(

j k j

j 0 −j

)
= (−1)2j+k

(
j k j

−j 0 j

)
,

(
j 2j j

−j 2j −j

)
=
(

j 2j j

j −2j j

)
= 1√

4j + 1
,

6.15. Using the above results, verify the following relations

.〈jj |T †
kq |jj 〉 =

√
2k + 1(2j)!δq,0√

(2j + k + 1)!(2j − k)! ,

〈j − j |T †
kq |jj 〉 = δk,2j δq,2j ,

〈jj |T †
kq |j − j 〉 = (−1)2j δk,2j δq,−2j ,

〈j − j |T †
kq |j − j 〉 = (−1)k

√
2k + 1(2j)!δq,0√

(2j + k + 1)!(2j − k)! .
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6.16. The spherical harmonics can be written in terms of the associated Legendre
polynomials as

.Ylm =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)m
√
2

√
2l + 1

4π

(l − |m|)!
(l + |m|)!P

|m|
l (cos θ) sin(|m|φ), (m < 0),

√
2l + 1

4π
Pl(cos θ), (m = 0),

(−1)m
√
2

√
2l + 1

4π

(l − m)!
(l + m)!P

m
l (cos θ) cos(mφ), (m > 0).

By using the above formula and identity

.P l
l (cos θ) = (−1)l

(2l)!
2l l! sinl θ,

show that Eq. (6.46b) can be explicitly written as

.W(θ, φ) = 1

2

√
N + 1

4π

√
2N + 1

4π

{
N∑

k=0

[1 + (−1)N+k]√2k + 1N !√
(N + k + 1)!(N − k)!

×Pk(cos θ) ± (−1)j
√
2(2N)!
2NN ! sinN θ [cos(Nφ) + (−1)N sin(Nφ)]

}
.



7Squeezed Coherent States

7.1 Squeezed Coherent States in QuantumOptics

A key characteristic of the coherent state of light is that it minimizes the product
of uncertainty in a pair canonically conjugate variables such as position and
momentum. However, there is a larger class of states which are unitarily equivalent
to the coherent states, minimizing the uncertainty product. In 1970, this fact was first
pointed out by Stoler [96, 97]. Subsequently in 1976, Yuen [98] had shown in his
seminal paper titled “Two-photon coherent states of the radiation field” that these
new minimum uncertainty states are physically the radiation states of ideal two-
photon lasers operating far above threshold. Unlike Glauber’s coherent states which
have equal fluctuations in both position and momentum, the two-photon coherent
states have a unique property that the quantum noise, or zero-point fluctuations,
in one field component can be significantly reduced below the quantum limit, at
the expense of enhancing fluctuations in the conjugate one. In other words, these
minimum uncertainty states are special states of light where the noise caused by
quantum effects has been largely squeezed out. Thus, they are then referred to
as squeezed coherent states of light. In the late 1980s, squeezed states of light
were first demonstrated by three independent experimental groups using different
methods, such as four-wave mixing in optical cavities [99] or single-mode optical
fibers [100], or parametric down conversion in nonlinear optical crystals [101].

The quantum noise suppression technique via squeezed coherent states makes
it indispensable when ultraprecision measurements are called for, like the ground-
based laser interferometric gravitational-wave observatories, such as LIGO inter-
ferometers [102] in the United States and Virgo interferometer [103] in Italy. In
both these measurements, in order to detect the faintest gravitational radiation from
the merger of compact astrophysical systems such as binary neutron stars or black
holes, the detector must be able to measure strains at the level of .10−21 or less
[104]. Such a tiny strain only distorts the shape of the Earth by .10−14 meters, or
about thousandth of the size of an atom. Hence, any vacuum fluctuations which
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C.-F. Kam et al., Coherent States, Lecture Notes in Physics 1011,
https://doi.org/10.1007/978-3-031-20766-2_7

129


 31279 -2226
a 31279 -2226 a
 
https://doi.org/10.1007/978-3-031-20766-2_7
https://doi.org/10.1007/978-3-031-20766-2_7
https://doi.org/10.1007/978-3-031-20766-2_7
https://doi.org/10.1007/978-3-031-20766-2_7
https://doi.org/10.1007/978-3-031-20766-2_7
https://doi.org/10.1007/978-3-031-20766-2_7
https://doi.org/10.1007/978-3-031-20766-2_7
https://doi.org/10.1007/978-3-031-20766-2_7
https://doi.org/10.1007/978-3-031-20766-2_7
https://doi.org/10.1007/978-3-031-20766-2_7
https://doi.org/10.1007/978-3-031-20766-2_7


130 7 Squeezed Coherent States

limit the phase sensitivity of the gravitational-wave interferometric detector have
to be kept at an absolute minimum. The idea of phase sensitive gravitational-
wave detection was first revealed by Hollenhorst [105] in 1979 in the context of
resonant-mass antenna. Subsequently in the early 1980s, by replacing coherent
vacuum states by squeezed vacuum states, Caves [106, 107] discussed in-depth
phase sensitive gravitational wave detection in the context of laser interferometric
detectors. Unlike producing squeezed coherent states in optical frequency region,
the production of squeezed coherent states in audio frequency region that is related
to gravitational-wave detection was not successfully demonstrated until the mid-
2000s [108–110]. Since then, squeezed light for quantum noise reduction becomes a
standard experimental tool in interferometric gravitational wave observations [111].
In the following, we discuss the basic properties of squeezed coherent states.

In order to generate a squeezed coherent state of light, one can consider a unitary
squeeze operator in the form

.Ŝ(ξ) ≡ exp

{
1

2

(
ξ∗â2 − ξ â†2

)}
, (7.1)

where .ξ ≡ reiθ is an arbitrary complex number. By a straightforward application of
the operator expansion formula

.eÂB̂e−Â = B̂ + [Â, B̂] + 1

2! [Â, [Â, B̂]] + · · · , (7.2)

one immediately obtains

.Â ≡ Ŝ(ξ)âŜ†(ξ) = μâ + νâ†, . (7.3a)

Â† ≡ Ŝ(ξ)â†Ŝ†(ξ) = μâ† + ν∗â, (7.3b)

where .μ ≡ cosh r and .ν ≡ sinh reiθ . The inverse relations of Eqs. (7.3a)–(7.3b) are

.â = μÂ − vÂ†, â† = μÂ† − ν∗Â. (7.4)

As .|μ|2 − |ν|2 = 1, one can verify that such transformation preserves the
commutation relation, .[Â, Â†] = [â, â†]. Hence, the change of variables from .â

and .â† to .Â and .Â† is a canonical transformation. A squeezed coherent state is then
obtained by applying the squeeze operator on a coherent state .|α〉

.|α, ξ 〉 ≡ Ŝ(ξ)|α〉 = Ŝ(ξ)D̂(α)|0〉, (7.5)

where .D̂(α) ≡ eαâ†−α∗â is the displacement operator. From Eq. (7.5), we readily
find that .Â|α, ξ 〉 = Ŝ(ξ)âŜ†(ξ)Ŝ(ξ)|α〉 = Ŝ(ξ)â|α〉 = α|α, ξ 〉. Hence, the
squeezed coherent state can also be regarded as the eigenstate of .Â = μâ+νâ† with
eigenvalue .α. In order to examine the properties of squeezed coherent states, we will
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introduce the two quadratures of the electromagnetic field, .Q̂ ≡ (â† + â)/
√
2 and

.P̂ ≡ i(â† − â)/
√
2, so that the expectation values and variances for the squeezed

coherent states .|α, ξ 〉 are

.〈α, ξ |Q̂|α, ξ 〉 = 1√
2

[
(μ − ν)α∗ + (μ − ν∗)α

]
, . (7.6a)

〈α, ξ |P̂ |α, ξ 〉 = i√
2

[
(μ + ν)α∗ − (μ + ν∗)α

]
, . (7.6b)

〈α, ξ |(�Q̂)2|α, ξ 〉 = 1

2
|μ − ν|2 = 1

2
(cosh 2r − sinh 2r cos θ), . (7.6c)

〈α, ξ |(�P̂ )2|α, ξ 〉 = 1

2
|μ + ν|2 = 1

2
(cosh 2r + sinh 2r cos θ), . (7.6d)

〈α, ξ |(�P̂ )(�Q̂)|α, ξ 〉 = i

2
μ(ν − ν∗) − i

2
= −1

2
sinh 2r sin θ − i

2
, . (7.6e)

〈α, ξ |(�Q̂)(�P̂ )|α, ξ 〉 = i

2
μ(ν − ν∗) + i

2
= −1

2
sinh 2r sin θ + i

2
, (7.6f)

which yields

.

√
〈α, ξ |(�Q̂)2|α, ξ 〉

√
〈α, ξ |(�P̂ )2|α, ξ 〉 = 1

2
(1 + sinh2 2r sin2 θ) ≥ 1

2
. (7.7)

Hence, the squeezed coherent state .|α, ξ 〉 is a minimum uncertainty state for .r = 0,
and .θ = 0 or .π . Clearly, the former case .r = 0 corresponds to the conventional
coherent states without squeezing. For the latter case, we have

.�Q̂ = e−r

√
2

,�P̂ = er

√
2
, for ξ = r, (7.8)

�Q̂ = er

√
2
,�P̂ = e−r

√
2

, for ξ = −r.

From the above, we see that in the squeezed coherent states with .ξ = ±r , the
fluctuations of one quadrature are reduced below the quantum limit at the expense of
an increase in the fluctuations of another quadrature, so that the uncertainty product
remains at the minimum value. As the reduction of fluctuations of the quadratures
depends only on the parameter r , it is therefore referred to as a squeeze parameter.

Through the above discussions, we have shown that there is a kind of special
coherent states—the squeezed coherent state, which minimizes the uncertainty
product in such a way that one part of the field fluctuates less and another part of the
field fluctuates more. In the following, we shall discuss in detail the basic properties
of the squeezed coherent state, including its photon statistics and quasi-probability
distributions.
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To begin with, let us derive the coherent state representation of the squeezed
coherent states .|β, ξ 〉, i.e., the projection of .〈α|β, ξ 〉 on the Glauber coherent state
.|α〉. Using the relation .Â|β, ξ 〉 ≡ (μâ + νâ†)|β, ξ 〉 = β|β, ξ 〉, we obtain a
differential equation for .|β, ξ 〉

.

[
μ

(
∂

∂α∗ + α

2

)
+ να∗

]
〈α|β, ξ 〉 = β〈α|β, ξ 〉, (7.9)

which is solved by .〈α|β, ξ 〉 = N (β, β∗) exp{ 1
μ
(βα∗ − ν

2α∗2) − 1
2 |α|2}, where

.N (β, β∗) is an arbitrary function of .β and .β∗ chosen to ensure the normalization
of the squeezed coherent states, .〈β, ξ |β, ξ 〉 = 1

π

∫ |〈α|β, ξ 〉|2d2α = 1. A direct
computation yields

.
1

π

∫
|〈α|β, ξ 〉|2d2α = |N (β, β∗)|2μ exp

{
|β|2 − 1

2μ
(νβ∗2 + ν∗β2)

}
. (7.10)

Equation (7.10) then immediately yields, apart from an arbitrary phase factor, the
coherent state representation of the squeezed coherent state .|β, ξ 〉

.〈α|β, ξ 〉 = 1√
μ
exp

{
1

μ
(βα∗ − ν

2
α∗2 + ν∗

2
β2) − 1

2
|α|2 − 1

2
|β|2

}
. (7.11)

As .e−z2+2sz =∑n
1
n!Hn(s)z

n is the generating function of the Hermite polynomials
.Hn(s), one immediately obtains

.〈α|β, ξ 〉 = N (β, β∗)e− 1
2 |α|2e−z2+2sz (7.12)

= N (β, β∗)e− 1
2 |α|2

∞∑
n=0

1

n!Hn(s)z
n,

where .s ≡ β√
2μν

and .z ≡
√

ν
2μα∗. Comparing Eq. (7.12) to the coherent state

representation of .|β, ξ 〉 in terms of the projections .〈n|β, ξ 〉

.〈α|β, ξ 〉 =
∞∑

n=0

〈α|n〉〈n|β, ξ 〉 = e− 1
2 |α|2

∞∑
n=0

α∗n

√
n! 〈n|β, ξ 〉, (7.13)

one finally obtains the projections .〈n|β, ξ 〉

.〈n|β, ξ 〉 = N (β, β∗) 1√
n!
(

ν

2μ

)n/2

Hn

(
β√
2μν

)
. (7.14)
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The probability that there are n photons in the squeezed coherent state .|β, ξ 〉 is then

.p(n) ≡ |〈n|β, ξ 〉|2 = e
−|β|2+ 1

2μ (νβ∗2+ν∗β2) 1

μn!
∣∣∣∣ ν

2μ

∣∣∣∣
n ∣∣∣∣Hn

(
β√
2μν

)∣∣∣∣
2

, (7.15)

where .μ ≡ cosh r , .ν ≡ sinh reiθ , and r is the squeeze parameter.
Leveraging the relations .â = μÂ − νÂ† and .Â|β, ξ 〉 = β|β, ξ 〉, we readily find

the mean photon number in the squeezed coherent states

.〈n̂〉 ≡ 〈β, ξ |â†â|β, ξ 〉 (7.16)

= 〈β, ξ |(μÂ† − ν∗Â)(μÂ − νÂ†)|β, ξ 〉
= ∣∣μβ∗ − ν∗β

∣∣2 + |ν|2,

which equals to .|β|2 for the Glauber coherent state with .ν = 0 and equals to .|ν|2 =
sinh2 r for the squeezed vacuum state with .β = 0. After examining the second-order
correlation function

.〈(â†)2â2〉 = 〈β, ξ |(μÂ† − ν∗Â)2(μÂ − νÂ†)2|β, ξ 〉 (7.17)

= 〈n̂〉2 + |ν|2[(6μ2 + 2|ν|2)|β|2 + μ2 + |ν|2]
− μν(4|ν|2 + 1)β∗2 − μν∗(4|ν|2 + 1)β2,

we immediately obtain the photon number variance .〈(�n̂)2〉 in the squeezed
coherent states as

.〈n̂2〉 − 〈n̂〉2 = 〈n̂〉 + |ν|2[(6 + 8|ν|2)|β|2 + 2|ν|2 + 1] (7.18)

− (4|ν|2 + 1)(μνβ∗2 + μν∗β2).

In particular, for the Glauber coherent state with .ν = 0, we recover the result
.〈(�n̂)2〉 = 〈n̂〉 = |β|2.

With the about results, one may use the Mandel Q parameter [112], defined
by .Q ≡ (〈�n̂2〉 − 〈n̂〉)/〈n̂〉, to measure the departure of the occupation
number distribution from Poissonian statistics. When Q is negative, i.e.,
.−1 ≤ Q < 0, the photon number variance is less than the mean photon
number and is characterized by sub-Poissonian statistics. The extremal case
.Q = −1 is attained for Fock states with definite number of photons.
In Fig. 7.1, we plot the Mandel Q parameter for squeezed coherent states
as a function of the squeeze parameter, from which we see that .Q ≤ 0
for .r ≤ 0.413. In general, the photon statistics of the squeezed coherent
state .|β, ξ 〉 can be both super- or sub-Poissonian, depending on both .β

and .ξ .
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Fig. 7.1 Mandel Q parameter for the squeezed coherent state .|β, ξ〉 ≡ Ŝ(ξ)|β〉 as a function of
the squeeze parameter r . Here .β = 1 and .ξ = r

We now discuss some quasi-probability functions for squeezed coherent states.
We begin by studying the Wigner function .W(α) defined as the Fourier transform
of the characteristic function .CW(η) ≡ Tr[ρ̂D̂(η)]

.W(α) ≡ 1

π2

∫
d2ηeαη∗−α∗ηCW(η), (7.19)

where .D̂(η) ≡ eηâ†−η∗â is the displacement operator and .ρ̂ ≡ |β, ξ 〉〈β, ξ | is the
squeezed coherent state density matrix. Using the relations .S†(ξ)âŜ(ξ) = μâ −
νâ† and .S†(ξ)â†Ŝ(ξ) = μâ − ν∗â†, we obtain .S†(ξ)D̂(η)Ŝ(ξ) = D̂(ζ ) from the
Taylor expansion of the displacement operator, where .ζ ≡ ημ + η∗ν. Hence, the
characteristic function for the squeezed coherent state becomes

.CW(η) = 〈β|S†(ξ)D̂(η)Ŝ(ξ)|β〉 (7.20)

= 〈β|D̂(ζ )|β〉 = eζβ∗−ζ ∗β− 1
2 |ζ |2 .
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Fig. 7.2 Schematic of the Wigner quasi-probability distribution for the squeezed coherent states
.|β, ξ〉. Here we plot the squeezed vacuum state with .β = 0 and .ξ = 0.5

With a straightforward calculation, we obtain

.W(α) = 1

π2

∫
d2ηeα̃η∗−α̃∗η− μ2+|ν|2

2 |η|2− μν∗
2 η2− μν

2 η∗2
(7.21)

= 2

π
exp{−2e2r�(e− iθ

2 α̃)2 − 2e−2r�(e− iθ
2 α̃)2}.

where .α̃ ≡ α + νβ∗ − μβ. In particular, for the Glauber coherent states .|β〉,
we recover the result .W(α) = 2

π
e−2|α−β|2 . From Eq. (7.21), we noticed that the

Wigner distribution for a squeezed coherent state is a 2D Gaussian function, which
is a product of two Gaussian functions with widths .e−r and .er , respectively. In
Fig. 7.2, we plot the Wigner distribution for the squeezed vacuum state with .β = 0.
Unlike the Glauber coherent states which possess a rotational symmetric Wigner
distribution, the Wigner distribution for squeezed coherent states is stretched along
the imaginary axis and is squeezed along the real axis.

Similarly, one could calculate the Q-representation for the squeezed coherent
state .Q(α) ≡ 1

π
〈α|ρ̂|α〉, where .ρ̂ ≡ |β, ξ 〉〈β, ξ | is the squeezed coherent state

density matrix. Using the coherent state representation of the squeezed coherent
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state, Eq. (7.11), one immediately obtains

.Q(α) = 1

πμ
e

1
μ

(βα∗+β∗α− ν
2 (α∗2−β∗2)− ν∗

2 (α2−β2)−|α|2−|β|2)
. (7.22)

For the special case when .ν = sinh r is real, the Q-representation for the squeezed
coherent states may be simplified as

.Q(α) = 1

π cosh r
exp

{
2(αx − e−rβx)

2

1 + e−2r + 2(αy − erβy)
2

1 + e2r

}
, (7.23)

which is a 2D Gaussian function centered at .(αx, αy) = (e−rβx, e
rβy) with widths

.
√
1 + e−2r and .

√
1 + e2r along the real and imaginary axis, respectively, where

.α ≡ αx + iαy and .β ≡ βx + iβy . In particular, for the Glauber coherent state with

.r = 0, we recover the result .Q(α) = 1
π
e|α−β|2 .

7.2 Detection of Gravitational Wave

Quantum vacuum fluctuations, though at first sight insignificant, impose the most
severe limit on the sensitivity of present-day high-precision measurements such
as interferometric gravitational wave observation. Fortunately, with the use of
squeezed coherent states, it may help us to mitigate this seemingly fundamental
quantum interferometry bound. It was generally proven that the combination of a
bright coherent state and a squeezed vacuum state is optimal for interferometric
gravitational wave observations [113]. After decades of proof-of-principle experi-
ments [108,110,114–119], squeezed coherent states of light have been successfully
implemented to enhance the sensitivity of the gravitational-wave detector GEO600
[111,120] and the initial LIGO detector at Hanford, WA [104].

The prototypical gravitational wave detectors such as LIGO’s interferometers
are essentially kilometer-scale Michelson interferometers. An ideal version of such
an interferometric detector is operated as follows [121]: a continuous-wave laser
light is split at a lossless 50-50 beam splitter into two beams propagating in the
nearly equal length perpendicular arms of the interferometer, which are reflected by
perfectly reflecting mirrors and are finally recombined at the beam splitter. The two
beams generate interference patterns which are detected by a photodiode. As shown
in Fig. 7.3, we have used the Latin letters (a, b, c, ...) to designate the field amplitude
in each light path and use letters with hat (.â, .b̂, .ĉ, ...) to designate the annihilation
operators for the associated field modes propagating in the given direction.

The central target for interferometric gravitational wave observation is the phase
difference between the output fields .c′ and .d ′ before recombination at the beam
splitter. As these fields are related to the fields c and d by a phase change, one has
to explore how the phase between the fields c and d affected by noise. Classically,
if there is no light incident from the direction of b, the two beams c and d are
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split from the same source field a at the beam splitter, which implies that all their
fluctuations would be perfectly correlated, referring to the fluctuations in the source
field a. In other words, even if the phase of the source field is random, the phase
difference between fields c and d is definite. But for a quantum field, some kind of
uncorrelated fluctuations always exists in the phases of the beams c and d, which
will yield an indefinite phase difference between them.

The origin of these uncorrelated fluctuations may be understood by taking into
account the inevitably vacuum fluctuations incident from the other port of the
interferometer [106, 107], i.e., a mode of the electromagnetic field in the vacuum
state marked as b in Fig. 7.3. As the beam splitter will combine the two incident
fields a and b, we may write the annihilation operators for modes c and d as follows:

.ĉ = (â + b̂)/
√
2, . (7.24a)

d̂ = (â − b̂)/
√
2, (7.24b)

where the .π phase shift upon reflection is expected from the time-reversal argu-
ments, hence the minus sign in front of .b̂ in Eq. (7.24b). Now, we may see that
although the fluctuations in the field a are perfectly correlated in c and d, the
fluctuations in the field b are in fact anticorrelated in c and d, causing them to
add instead of cancel when the two fields subtracted. The annihilation operations
for modes .c′ and .d ′ are then given by .ĉ′ = eiϕc ĉ and .d̂ ′ = eiϕd d̂, with a phase
difference .ϕ ≡ ϕc − ϕd . The two beams .c′ and .d ′ are then recombined at the beam
splitter along with a phase shift of .π in the field mode .d ′. Hence, the annihilation
operator for the field mode arriving the photodiode at the bottom port is

.b̂′ = [(a + b)eiϕc − (a − b)eiϕd ]/2 (7.25)

= ei(ϕc+ϕd)/2[cos(ϕ/2)b̂ + i sin(ϕ/2)â].

The intensity of the light arriving the photodiode is then given by

.〈b̂′†b̂′〉 = sin2(ϕ/2)〈â†â〉 + cos2(ϕ/2)〈b̂†b̂〉 (7.26)

+ i cos(ϕ/2) sin(ϕ/2)(〈b̂†â〉 − 〈â†b̂〉).

Clearly, when the mode b is in the vacuum state, the last two terms have
zero expectation value. Besides this, the second term does not contribute to the
fluctuations of the photon number in the output mode. Hence, the photon-number
fluctuations in the output mode are due to those of the input laser mode and the
interference of light coming from the two input ports. In other words, although the
vacuum fluctuations are not directly observable, they give a nonzero contribution
to photon fluctuations in the output light through interference. For the case when
the input laser in a coherent state .|α〉 with .α = |α|eiδ , we obtain the second-order
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correlation function

.〈(b̂†â − b̂â†)2〉 = |α|2〈(b̂†eiδ − b̂e−iδ)2〉 − 〈b̂†b̂〉. (7.27)

Let us introduce two field quadratures as follows: .P̂δ ≡ i(b̂†eiδ − be−iδ)/
√
2 =

−Q̂ sin δ + P̂ cos δ and .Q̂δ ≡ (b̂†eiδ + be−iδ)/
√
2 = Q̂ cos δ + P̂ sin δ, where .P̂ ≡

i(b̂†−b)/
√
2 and .Q̂ ≡ (b̂†+b)/

√
2 are the conventional field quadratures which sat-

isfy the commutation relation .[Q̂, P̂ ] = i. Clearly, the field quadratures .P̂δ and .Q̂δ

are related to .P̂ and .Q̂ by a rotation angle .δ. Now, using Eq. (7.27), the fluctuations
in the last term in Eq. (7.26) become .cos2(ϕ/2) sin2(ϕ/2)[2|α|2〈(�P̂δ)

2〉 + 〈b̂†b̂〉],
of which the dominant term is proportional to the variance in the field quadrature .P̂δ

for a strong input laser field (.|α| � 1). It implies that one may apply the squeezed
vacuum state in another input port to significantly reduce the quantum noise in the
output beam, i.e., .〈(�P̂δ)

2〉 � 1/2. For a squeezed vacuum state .|0, reiθ 〉, one
obtains .〈b̂〉 = 〈b̂†〉 = 〈b̂†2b〉 = 〈b̂†b̂2〉 = 0, which implies that the cross terms do
not account for the photon-number fluctuations in the output mode when calculating
the square of Eq. (7.26). A direct computation yields

.〈(�b̂′†b̂′)2〉 = sin4(ϕ/2)〈(�â†â)2〉 + cos4(ϕ/2)〈(�b̂†b̂)2〉 (7.28)

− cos2(ϕ/2) sin2(ϕ/2)〈(b̂†â − b̂â†)2〉.

In order to maximally reduce the fluctuations in the output photon number, one
requires .θ = 2δ + π , so that .〈(b̂†eiδ − b̂e−iδ)2〉 = −e−2r . Then using the relations
.〈(�â†â)2〉 = |α|2, .〈(�b̂†b̂)2〉 = 2 cosh2 r sinh2 r , and .〈b̂†b̂〉 = sinh2 r , one obtains
the final expression for the photon-number fluctuations in the output mode [107,
121]

.〈(�b̂′†b̂′)2〉 = sin4(ϕ/2)|α|2 + 2 cos4(ϕ/2) cosh2 r sinh2 r (7.29)

+ cos2(ϕ/2) sin2(ϕ/2)(|α|2e−2r + sinh2 r).

At this point, one may assume that the net phase difference .ϕ consists of a reference
phase .ϕ0 and an extremely small phase shift .δϕ caused by the gravitational wave,
where .δϕ � ϕ0 � 1. Then, the contribution of the signal .δϕ to the intensity of light
arriving the photodiode is

.〈b̂′†b̂′〉 = sin2(ϕ/2)|α|2 + cos2(ϕ/2) sinh2 r ≈ ϕ0

2
|α|2δϕ, (7.30)

where we have neglected the contributions from the squeezed vacuum state, as long
as .|α| � cot(ϕ/2) sinh r ≈ 2 sinh r/ϕ0 for a strong input laser field and a moderate
value of the squeeze parameter. Besides, under the conditions .ϕ0 � 2e−r and .|α| �√
2er cot(ϕ/2) cosh r sinh r ≈ √

2er sinh 2r/ϕ0, the photon-number fluctuations in
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Fig. 7.3 Schematic of a
gravitational wave Michelson
interferometer. Typically, a is
a strong laser field in a
coherent state, and b is either
a vacuum or a squeezed
vacuum state. The amplitudes
of the fields in each arm of the
interferometer just behind the
beam splitter are c and d, and
the amplitudes of the fields
just before recombination are
.c′ and .d ′, which produce the
output beams .a′ and .b′

the output mode are dominated by

.

√
〈(�b̂′†b̂′)2〉 ≈ cos(ϕ/2) sin(ϕ/2)|α|e−r ≈ ϕ0

2
|α|e−r . (7.31)

Comparing Eqs. (7.30) and (7.31), the signal from the gravitational wave is large
than the noise only when

.δϕ >
e−r

|α| = e−r√〈n̂a〉
, (7.32)

which reduces to the standard shot noise without squeezing. On the other hand, in
the present of squeezing, the inevitable vacuum fluctuations incident from the other
port of the interferometer will be attenuated by a factor .e−r .

7.3 Continuous Variable Quantum Information

Besides the detection of gravitational wave, another major application of squeezed
coherent states is in continuous variable quantum information. The concept of
continuous variable quantum information was initially proposed by Lloyd and
Braunstein in 1999 [122], and the associated error correction codes were proposed
even earlier by Braunstein in 1998 [123]. Traditionally, quantum information
processing concerns the application and manipulation of qubits, which is the
quantum analogue of the classical bits, described by a linear superposition of two
orthonormal basis states .|0〉 and .|1〉, i.e., .|ψ〉 = α|0〉 + β|1〉, where the quantum
information is encoded in the complex coefficients .α and .β. In particular, for
photonic quantum information processing, the information is carried by the degrees
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of freedom of single photons, where the state of photonic qubits is described by the
discrete photonic-number basis. However, there exists another approach to quantum
information processing, in which the unit of information is a linear superposition of
real-valued continuous variables (CVs), represented by the continuous degrees of
freedom of light, such as the amplitude and phase quadratures .Q̂ ≡ (â + â†)/

√
2

and .P̂ ≡ i(â† − â)/
√
2 of an electromagnetic field mode. Here, the quadratures

.P̂ and .Q̂ of an electromagnetic field mode are the mathematical analogues of the
position and momentum operators of a quantum harmonic oscillator.

In general, this type of continuous variable information is described by .|ψ〉 =∫∞
−∞ ψ(q)|q〉dq, where .|q〉 is the eigenstate of the amplitude quadrature .Q̂, i.e.,

.Q̂|q〉 = q|q〉. Notice that quantum computation with discrete photonic qubits is a
special case of continuous variable quantum computation, since the state .|ψ〉 can be
expanded in the photon number basis as .|ψ〉 =∑∞

n=0 cn|n〉 with .cn ≡ 〈n|ψ〉, which
involves the whole infinite dimensional Hilbert space of a light mode rather than its
zero- and one-photon subspace. Ideally, the basic state .|q〉 for continuous variable
quantum information processing can be realized by an infinitely squeezed coherent
state

.|q〉 ≡ lim
r→∞

√
μ

π1/4 |√2μq, r〉, (7.33)

where .μ ≡ cosh r and r is the squeeze parameter. Here, one can show that two
arbitrary basic states satisfy the orthogonality relation .〈q ′|q〉 = δ(q ′ − q).

Similarly to a universal quantum computer over discrete variables which applies
local operations to execute any desired unitary transformation over those variables
to an arbitrary accuracy, a continuous variable quantum computer is universal
if it can simulate any desired unitary quantum gates which transform the initial
superposition of CVs, .|ψ〉 = ∫∞

−∞ ψ(q)|q〉dq, into another superposition of CVs,

.Û |ψ〉 = ∫∞
−∞ ψ(q)Û |q〉dq.

In order to construct an arbitrary unitary quantum gate .Û ≡ eiĤ t , it is required
that the Hamiltonian .Ĥ consists arbitrary polynomials of the quadratures .Q̂ and .P̂ of
an electromagnetic field mode. Practically, the numbers of possible quantum gates
over discrete or continuous variables are both uncountable, and thus it is impossible
to exactly simulate arbitrary quantum logic gates. However, one may still find a
finite set of universal quantum gates, so that any desired unitary operations can be
approximated up to an arbitrary accuracy by a sequence of gates from this finite set.

For traditional quantum information processing with discrete variables such as
qubits, the single-qubit rotation gates .Rx(θ), .Ry(θ), .Rz(θ) which rotate the qubit on
the Bloch sphere by an angle .θ about the x-, y-, or z-axis, respectively, the single-
qubit phase shift gate .P(ϕ) which maps the basis states .|0〉 → |0〉 and .|1〉 → eiϕ |1〉,
and the two-qubit controlled NOT gate which maps the basics states .|a, b〉 to .|a, a⊕
b〉 form a universal set of quantum gates, where .⊕ denotes the exclusive disjunction
operation. Similarly, for quantum information processing with continuous variables,
one may show that a universal quantum computer over continuous variables such as
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the quadratures of the electromagnetic field can be constructed via simple devices
including beam splitters, phase shifters, or squeezers and single nonlinear devices
such as optical fibers with Kerr-like nonlinearity. Unitary transformations which
involve Hamiltonians that are linear or quadratic in the quadratures .Q̂ and .P̂ are
called Gaussian gates. This implies that an arbitrary Gaussian gate and at least
one non-Gaussian gate which involve higher-order Hamiltonians are sufficient to
simulate arbitrary unitary transformations. The simplest logic gates among this finite
set are the position translation and momentum boost operators defined by .X̂(s) ≡
e−isP̂ and .Ẑ(s) ≡ eisQ̂, respectively, where the associated Hamiltonians are linear
in the quadratures of an electromagnetic field mode. On the computational basis of
the amplitude quadrature eigenstates .|q〉 with .q ∈ R, the actions of the position
translation and momentum boost operators are

.X̂(s)|q〉 = |q + s〉, Ẑ|q〉 = eisq |q〉. (7.34)

In optical systems, one can implement the displacement operations by use of the
linear elector-optic effects (Pockels effects), i.e., by modulating the amplitude and
phase of optical beams with an electro-optic modulator (EOM), which is described
by a Hamiltonian linear in the annihilation and creation operators, or equivalently,
in the amplitude and phase quadratures of an electromagnetic field mode: .Ĥ ∝
aQ̂ − bP̂ . Another two important Gaussian logic gates over continuous variables

are the rotation gate .R̂(s) ≡ eis(P̂ 2+Q̂2)/2 with .Ĥ ∝ Q̂2 + P̂ 2 and the squeezing

gate .Ŝ(s) ≡ e−is(Q̂P̂+P̂ Q̂)/2 with .Ĥ ∝ Q̂P̂ + P̂ Q̂, which can be implemented in
optical systems by introducing a phase shift in the beams and by using the second-
order nonlinear effects, respectively. In particular, a rotation operation by .θ ≡ π/2
is called the Fourier transform gate .F̂ ≡ R̂(π/2). It is a continuous variable
quantum information analogue of the Hadamard gate acting on a single qubit,
which maps between the quadrature operators of an electromagnetic field mode as

.F̂ †Q̂F̂ = −P̂ , F̂ †P̂ F̂ = Q̂. (7.35)

To simulate arbitrary Gaussian gates, one also needs the phase gate .P(s) ≡ esQ̂2/2

with .Ĥ ∝ Q̂2, which is the continuous variable quantum information analogue
of the phase gate acting on a single qubit, and can be also implemented by use
of second-order nonlinear effects in optical systems. Finally, in order to perform
arbitrary unitary operations, one needs an additional non-Gaussian gate such as the

Kerr gate .V (s) ≡ eisQ̂3/3 with .Ĥ ∝ Q̂3, which can be implemented in optical
systems by imposing a cubic phase shift on the beams based on the Kerr-like third-
order nonlinearity effects. Hence, any arbitrary unitary operation can be expressed
as a finite sequence of gates from the universal set of gates specified by

.R̂(s) ≡ eis(Q̂2+P̂ 2)/2, . (7.36a)

Ẑ(s) ≡ eisQ̂, . (7.36b)
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P̂ (s) ≡ eisQ̂2/2, . (7.36c)

V̂ (s) ≡ eisQ̂3/3. (7.36d)

In general, for multimode optical systems of which the quadrature operators satisfy
the commutation relations .[Q̂j , Q̂k] = [P̂j , P̂k] = 0 and .[Q̂j , P̂k] = iδjk , the
universal set of gates is specified by the multimode analogues of the above gates

plus the multi-mode controlled phase gate .Ĉz(s) ≡ eisQ̂i Q̂j

.R̂j (s) ≡ e
is(Q̂2

j +P̂ 2
j )/2

, . (7.37a)

Ẑj (s) ≡ eisQ̂j , . (7.37b)

P̂j (s) ≡ e
isQ̂2

j /2
, . (7.37c)

V̂j (s) ≡ e
isQ̂3

j /3
, . (7.37d)

Ĉz(s) ≡ eisQ̂i Q̂j . (7.37e)

7.4 Spin Squeezed States

In the last few sections, we have shown that squeezing in bosonic systems is a
promising method to reduce quantum fluctuations while preserving the minimum
uncertainty product. An electromagnetic field is squeezed if the uncertainty mea-
sured by the variance of one field quadrature is smaller than the standard quantum
limit of .1/4.

Similar to bosonic systems, atomic systems which consist of .N = 2j spin-1/2
particles also exhibit quantum squeezing. Based on the observation that a spin-
j coherent state .|θ, φ〉 is equivalent to a set of N elementary spins all pointing
along the same mean direction .(θ, φ), in a paper entitled “Squeezed spin states”
published in 1993 [124], Kitagawa and Ueda argued that the reduction of quantum
fluctuations in one direction at the expense of those enhanced in the other direction
is realizable, as long as the collective spin system is constructed from correlated
or entangled elementary spin-1/2 particles. As we will show below, in contrast
to the spin coherent states which have an isotropic quasi-probability distribution
in a spherical space, the spin squeezed states have an elliptical quasi-probability
distribution. As linear Hamiltonians only rotate the elementary spin-1/2 particles
collectively and do not produce correlations and entanglements among them, the
spin squeezing must be established by nonlinear interactions. Utilizing different
nonlinear Hamiltonians, Kitagawa and Ueda showed that there are two types of
spin squeezed states in correlated spin ensembles, namely, one- and two-axis spin
squeezed states.
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The one-axis spin squeezed states .|j, ζ, μ〉 ≡ Û |j, ζ 〉, with .Û ≡ e− i
2μĴ 2

z and
.μ ≡ 2χt , are generated by the lowest-order nonlinear interaction .Ĥ ≡ χĴ 2

z , where
.|j, ζ 〉 is an initial spin coherent state. In the Heisenberg picture, the spin operators
obey the precession equations

.
˙̂
Jx = iχ(ĴzĴy + Ĵy Ĵz),

˙̂
Jy = −iχ(ĴzĴx + Ĵx Ĵz),

˙̂
Jz = 0. (7.38)

One sees that the precession of the collective spin is modulated by .Ĵz, which is a
twisting effect analogous to the self-phase modulation in photonic systems. As the
nonlinear twisting Hamiltonian .Ĥ (Ĵ 2

z ) is along the z-axis, one may choose the initial
state as a spin coherent state along the x-axis, so that the one-axis spin squeezed state
has the form

.|j, μ〉 ≡ e− i
2μĴ 2

z

∣∣∣π
2

, 0
〉
= 2−j

j∑
m=−j

√(
2j

j + m

)
e− i

2μm2 |j,m〉. (7.39)

A direct calculation shows that the mean spin direction of the one-axis spin squeezed
state is still long the x-axis, i.e., .〈Ĵx〉 = j cos2j−1 μ

2 , .〈Ĵy〉 = 〈Ĵz〉 = 0, but the
magnitude of the mean spin vector is reduced by a factor .cos2j−1 μ

2 , compared with
that of the spin coherent state .|π/2, 0〉. A direct computation yields the variances
and covariances for the one-axis spin squeezed states

.(�Ĵx)
2 = j

2

[
j + 1

2
+
(

j − 1

2

)
cos2j−2 μ − 2j cos2(2j−1) μ

2

]
, (7.40)

(�Ĵy)
2 = j

2

[
j + 1

2
−
(

j − 1

2

)
cos2j−2 μ

]
, (�Ĵz)

2 = j

2
,

Cov(Ĵy, Ĵz) = j

(
j − 1

2

)
sin

μ

2
cos2j−2 μ

2
,Cov(Ĵz, Ĵx) = Cov(Ĵx, Ĵy) = 0,

where .Cov(Â, B̂) ≡ 1
2 (ÂB̂ + B̂Â) is the covariance between the operators .Â and

.B̂. Notice that in the absence of the nonlinear twisting effects, i.e., .μ ≡ 2χt = 0,
one immediately recovers the variances for the spin coherent states, .(�Ĵx)

2 = 0,
.(�Ĵy)

2 = (�Ĵz)
2 = j/2.

In order to visualize the one-axis spin squeezed state .|j, μ〉, one may plot the
quasi-probability distribution .Q(θ, φ) defined by

.Q(θ, φ) ≡ 2j + 1

4π
|〈θ, φ|j, μ〉|2 (7.41)

= 2j + 1

4π · 22j

∣∣∣∣∣∣
j∑

m=−j

(
2j

j + m

)(
cos

θ

2

)j−m (
eiφ sin

θ

2

)j+m

e− i
2μm2

∣∣∣∣∣∣
2

.
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Fig. 7.4 Schematic of the Husimi-Q quasi-probability distribution .Q(θ, φ) for the one-axis spin
squeezed state .|j, μ〉 with .j = 20 and .μ = 0.2 or .0.4, respectively, where .x ≡ Q(θ, φ) sin θ cosφ,
.y ≡ Q(θ, φ) sin θ sinφ, and .z ≡ Q(θ, φ) cos θ . The spin squeezed states .|j, μ〉 are shown in
viridian, and the initial spin coherent state .|π/2, 0〉 is shown in half-transparent moss green and
lavender

In Fig. 7.4, the Husimi-Q quasi-probability distribution .Q(θ, φ) for the one-axis
spin squeezed state .|j, μ〉 manifests the spin squeezing effects when .μ is nonzero.
One sees that the spin squeezing effect is larger when .μ increases from .0.2 to .0.4,
while the optimal squeezing angle depends on the evolution time t via .μ = 2χt .

Unlike the one-axis spin squeezed states .|j, μ〉, there is another type of spin
squeezed states, namely, the two-axis spin squeezed states, of which the optimal
squeezing angles are invariant under time evolution. The two-axis spin squeezed
states can be generated by applying nonlinear twisting simultaneously clockwise
and counterclockwise along the two orthonormal axes in the .θ = π/2 and .φ =
±π/4 directions, which are both in the plane normal to the mean spin direction.
Hence, the nonlinear twisting Hamiltonians for the two-axis spin squeezed states

.|j, ν〉 ≡ e−itĤ (Ĵ+,Ĵ−)|j,−j 〉 = e− ν
2 (Ĵ 2+−Ĵ 2−)|j,−j 〉 are given by .Ĥ ≡ χ(Ĵx Ĵy +

Ĵy Ĵx) = χ
2i (Ĵ

2+ − Ĵ 2−), where .ν ≡ χt . One characteristic of the two-axis spin

squeezed states is that the covariance .〈Ĵx Ĵy + Ĵx Ĵy〉 vanishes, as .Ĵx Ĵy + Ĵx Ĵy is
conserved in time, i.e., .[Ĵx Ĵy + Ĵx Ĵy, Ĥ ] = 0, and the covariances .〈Ĵ 2±〉 vanish for
the initial lowest weight state .|j,−j 〉.

Moreover, as .Ĵ 2±|j,m〉 ∝ |j,m ± 2〉, the two-axis twisting Hamiltonian change
m in the Dicke states .|j,m〉 by 2. Hence, the two-axis spin squeezed state .|j, ν〉
must be an even parity state, i.e., .|j, ν〉 is spanned only by Dicke states .|j,−j + n〉
with n even, and the states .Ĵ±|j, ν〉 must be odd parity states, i.e., .Ĵ±|j, ν〉 are
spanned only be Dicke states .|j,−j + n〉 with n odd. In other words, the two-axis
spin squeezed states .|j, ν〉 as well as .Ĵ 2±|j, ν〉 are eigenstates of the parity operator

.(−1)Ĵz+j with an eigenvalue 1, while the states .Ĵ±|j, ν〉 are the eigenstate of the

parity operator .(−1)Ĵz+j with eigenvalues .−1. In this regard, both the expectations
.〈Ĵx〉 ≡ 1

2 (〈Ĵ+〉 + 〈Ĵ−〉) and .〈Ĵy〉 ≡ 1
2i (〈Ĵ+〉 − 〈Ĵ−〉) vanish, as they involve
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inner products between Dicke states with different parities. Unlike the one-axis
spin squeezed state, as both the expectations .〈Ĵx〉 and .〈Ĵy〉 = 0 vanish, the mean
spin direction always points along the z-direction. For the same reason, both the
expectations .〈Ĵ±Ĵz〉 and .〈ĴzĴ±〉, as well as the covariances .〈Ĵx Ĵz + ĴzĴx〉 and
.〈Ĵy Ĵz + ĴzĴy〉, vanish identically. But unfortunately, the two-axis twisting model
cannot be solved analytically for arbitrary j . As examples, one may compute the
two-axis spin squeezed states .|j, ν〉 explicitly for .j ≤ 2:

.|1, ν〉 = − sin ν|1, 1〉 + cos ν|1,−1〉, . (7.42a)∣∣∣∣32 , ν

〉
= − sin(

√
3ν)|3

2
,
1

2
〉 + cos(

√
3ν)

∣∣∣∣32 ,−3

2

〉
, . (7.42b)

|2, ν〉 = sin2(
√
3ν)|2, 2〉 − 1√

2
sin(2

√
3ν)|2, 0〉 + cos2(

√
3ν)|2,−2〉,

(7.42c)

which yields the following variances with respect to .|j, ν〉 for .j ≤ 2:

.〈Ĵ 2
x 〉 = sin2

ν

2
, 〈Ĵ 2

y 〉 = cos2
ν

2
, for j = 1; . (7.43a)

〈Ĵ 2
x 〉 = 3

4
+ sin2(

√
3ν) +

√
3

2
sin(2

√
3ν), . (7.43b)

〈Ĵ 2
y 〉 = 3

4
+ sin2(

√
3ν) −

√
3

2
sin(2

√
3ν), for j = 3

2
;

〈Ĵ 2
x 〉 = 1 + sin2(2

√
3ν) − √

3 sin(2
√
3ν), (7.43c)

〈Ĵ 2
y 〉 = 1 + sin2(2

√
3ν) + √

3 sin(2
√
3ν), for j = 2.

In general, one may expand the two-axis spin squeezed states .|j, ν〉 as
.
∑j

m=−j cm|j,m〉, where the coefficients .c−j+n vanish with n odd. Then one may
visualize the two-axis spin squeezed state .|j, μ〉 by plotting the quasi-probability
distribution .Q(θ, φ)

.Q(θ, φ) = 2j + 1

4π

∣∣∣∣∣∣
j∑

m=−j

√(
2j

j + m

)(
cos

θ

2

)j−m (
sin

θ

2
eiφ

)j+m

cm

∣∣∣∣∣∣
2

.

(7.44)

In Fig. 7.5, the Husimi-Q quasi-probability distribution for the two-axis spin
squeezed state .|j, ν〉 manifests the spin squeezing effects when .ν is nonzero. From
Figs. 7.5a and b, the xy plane projections of .Q(θ, φ), one sees that unlike the one-
axis spin squeezed states, the optimal squeezing direction for two-axis spin squeezed
states is always along the x axis for small .ν. From Figs. 7.5c and d, the full three-
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Fig. 7.5 Schematic of the Husimi-Q quasi-probability distribution .Q(θ, φ) for the two-axis spin
squeezed state .|j, ν〉 with .j = 20, and .ν = 0.05 or .0.1, respectively. In Figs. 7.5a and b, the
xy plane projections of the Q distribution for the two-axis spin squeezed states are shown in
blue, where the Q distribution for the initial state .|j,−j〉 is shown in half-transparent grass
green. In Figs. 7.5c and d, the Q distributions for the two-axis squeezed states are shown. Here,
.x ≡ Q(θ, φ) sin θ cosφ, .y ≡ Q(θ, φ) sin θ sinφ, and .z ≡ Q(θ, φ) cos θ

dimensional Q distribution, one observes that the Q distribution changes from the
shape of a pea to the shape of a cell when .ν increases from .0.05 to .0.1, indicating
larger spin squeezing effects along the x direction.

For a spin coherent state, the variance .(�Ĵn)
2 of the spin operator .Ĵn ≡ Ĵ · n

will in general vary for different directions .n. However, it remains the same along
the directions .n⊥ perpendicular to the mean spin direction, i.e., .(�Ĵn⊥)2 = j/2.
Kitagawa and Ueda argued that, the criteria for spin squeezing is that the variance
.(�Ĵn⊥)2 < j/2 for some specific directions .n⊥ perpendicular to the mean spin
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direction [124]. In other words, one may define the spin squeezing parameter .ξs via

.ξ2s ≡ min((�Ĵn⊥)2)

j/2
, (7.45)

where the minimization is over all directions .n⊥ perpendicular to the mean spin
direction. Let us denote the mean spin direction for a general spin-j state as .n0 ≡
(θ, φ). For example, the mean spin direction for the one-axis spin squeezed state

.|j, μ〉 ≡ e− i
2μĴ 2

z |π/2, 0〉 is the x direction. With respect to the mean spin direction
.n0, the other two orthonormal bases are

.n1 ≡ (− sinφ, cosφ, 0) and n2 ≡ (cos θ cosφ, cos θ sinφ,− sin θ). (7.46)

where the above expressions are only valid for .θ �= 0 or .π . For .θ = 0 or .π , the mean
spin direction is along the .±z directions, and .φ can be fixed as 0 or .π respectively.
An arbitrary direction perpendicular to the mean spin direction can be represented
as .n⊥ ≡ n1 cosϕ + n2 sinϕ. As .〈Ĵn1〉 = 〈Ĵn2〉 = 0, the variance .〈Ĵ 2

n⊥〉 can be
written as

.〈Ĵ 2
n⊥〉 = 〈Ĵ 2

n1〉 cos2 ϕ + 〈{Ĵn1, Ĵn2}〉 cosϕ sinϕ + 〈Ĵ 2
n2〉 sin2 ϕ (7.47)

= 1

2

(
〈Ĵ 2

n1 + Ĵ 2
n2〉
)

+ A

2
cos 2ϕ + B

2
sin 2ϕ,

where .A ≡ 〈Ĵ 2
n1 − Ĵ 2

n2〉, .B ≡ 2Cov(Ĵn1 , Ĵn2) ≡ 〈{Ĵn1 , Ĵn2}〉, and .Cov(Ĵn1 , Ĵn2) are

the covariances between .Ĵn1 and .Ĵn2 . Hence, one immediately obtains

.
(�Ĵn⊥)2

j/2
≥ 1

j

(
〈Ĵ 2

n1 + Ĵ 2
n2〉 −

√
A2 + B2

)
, (7.48)

where the minimum value of the variance .(�Ĵn⊥)2 occurs when the relations
.cos 2ϕ = −A/

√
A2 + B2 and .sin 2ϕ ≡ −B/

√
A2 + B2 are satisfied. In other

words, the spin squeezing parameter is determined by

.ξ2s = 1

j

{
〈Ĵ 2

n1 + Ĵ 2
n2〉 −

√(
〈Ĵ 2

n1 − Ĵ 2
n2〉
)2 + 4Cov(Ĵn1 , Ĵn2)

2

}
, (7.49)

where the optimal squeezing angle is given by

.ϕ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2
arccos

( −A√
A2 + B2

)
for B ≤ 0,

π − 1

2
arccos

( −A√
A2 + B2

)
for B > 0.

(7.50)
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In particular, from Eq. (7.40), one immediately obtains the spin squeezing parameter
for the one-axis spin squeezed states

.ξ2s = 1 + N − 1

2

⎛
⎝1 − cosN−2 μ

2
−
√

(1 − cosN−2 μ)2

4
+ 4 sin2

μ

2
cos2(N−2) μ

2

⎞
⎠ ,

(7.51)

where .N ≡ 2j . Clearly, for .j = 1/2 or .N = 1, the spin squeezing parameter always
equals to 1, and hence spin squeezing effects only exist in higher spin systems with
.j > 1/2. Here, the spin squeezing parameters .ξs for one-axis spin squeezed states
.|j, μ〉 with .j ≤ 2 are shown as explicit examples:

.ξ2s = 1 −
∣∣∣sin μ

2

∣∣∣ ≥ 0, for j = 1, . (7.52a)

ξ2s = 1 + sin2
μ

2
−
√
sin4

μ

2
+ 4 sin2

μ

2
cos2

μ

2
≥ 1

3
, for j = 3

2
, . (7.52b)

ξ2s = 1 + 3 cos2
μ

2

(
sin2

μ

2
−
√
sin4

μ

2
+ sin2

μ

2

)
(7.52c)

≥ 1 + 3(1 − r)(r −
√

r2 + r) ≈ 0.3025, for j = 2,

where .r ≈ 0.2228 is the smallest positive root of the cubic equation .8r3 + 5r2 −
6r + 1 = 0. As a comparison, one can also compute the spin squeezing parameters
.ξs for two-axis spin squeezed state .|j, ν〉 with .j ≤ 2:

.ξ2s = 1 − sin(2ν), for j = 1, . (7.53a)

ξ2s = 1 + 4

3
sin2(

√
3ν) ∓ 2

√
3

3
sin(2

√
3ν) ≥ 1

3
, for j = 3

2
, . (7.53b)

ξ2s = 1 + sin2(2
√
3ν) ∓ √

3 sin(2
√
3ν) ≥ 1

4
, for j = 2. (7.53c)

Exercises

7.1. Verify Eq. (7.10) by using the Gaussian integral

.

∫ ∞

−∞
exp

⎛
⎝−1

2

n∑
i,j=1

Aijxixj

⎞
⎠ dnx =

√
(2π)n

detA
.

7.2. Show that the eigenstates |q〉 and |p〉 of the amplitude and phase quadratures
which satisfy Q̂|q〉 = q|q〉 and P̂ |p〉 = p|p〉 can be constructed from the following
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infinitely squeezed coherent states

.|q〉 ≡ lim
r→∞

√
μ

π1/4 |√2μq, r〉, |p〉 ≡ lim
r→∞

√
μ

π1/4 |i√2μp, r〉,

where μ ≡ cosh r and r is the squeeze parameter.

7.3. Verity the relation 〈q|p〉 = 1√
2π

eiqp, where |q〉 and |p〉 are eigenstates of the
quadrature operators of an electromagnetic field mode.

7.4. Show that the operators X̂(q) and Ẑ(p) are non-commutative and satisfy the
identity

.X̂(q)Ẑ(p) = e−iqpẐ(p)X̂(q).

7.5. Show that in the computational basis of the quadrature eigenstates, the actions
of X̂(q) and Ẑ(p) are

.X̂(s)|q〉 = |q + s〉, Ẑ|q〉 = eisq |q〉,
Ẑ(s)|p〉 = |p + s〉, X̂|p〉 = e−isp|p〉.

7.6. Verify that the Fourier transform gate F maps between the quadrature opera-
tors of an electromagnetic field mode as

.F̂ †Q̂F̂ = −P̂ , F̂ †P̂ F̂ = Q̂.

7.7. For the one-axis spin squeezed state |j, μ〉 ≡ e− i
2μĴ 2

z |π/2, 0〉, verify the
relations 〈Ĵx〉 = j cos2j−1 μ

2 , 〈Ĵy〉 = 〈Ĵz〉 = 0.

7.8. Verify the following relations for the one-axis spin squeezed state

.(�Ĵx)
2 = j

2

[
j + 1

2
+
(

j − 1

2

)
cos2j−2 μ − 2j cos2(2j−1) μ

2

]
,

(�Ĵy)
2 = j

2

[
j + 1

2
−
(

j − 1

2

)
cos2j−2 μ

]
, (�Ĵz)

2 = j

2
,

Cov(Ĵy, Ĵz) = j

(
j − 1

2

)
sin

μ

2
cos2j−2 μ

2
,Cov(Ĵz, Ĵx) = Cov(Ĵx, Ĵy) = 0.

7.9. Show the expectations 〈Ĵn1〉 and 〈Ĵn2〉 for spin squeezed states vanish in the
two orthonormal directions n1 and n2 perpendicular to the mean spin direction.



8Examples of Coherent States Beyond SU(2)

8.1 SU(1,1) Coherent States

In the last few chapters, we have discussed Glauber’s coherent states for optical
systems and spin coherent states for atomic systems which possess collective .SU(2)

symmetries. Of course, the applications of coherent states are definitely not limited
to these two symmetries. In this chapter, we will discuss examples of coherent
states which are beyond Glauber’s coherent states and spin coherent states. One
of the first nontrivial example of generated coherent states is that for the Lie group
.SU(1, 1), which is the simplest non-compact non-Abelian simple Lie group. In fact,
the earliest application of this coherent state was in nonlinear quantum optics, where
the Hamiltonian of a degenerate parametric oscillator is described by [125]

.Ĥ = ωâ†â + κ(e−2iωt â†2 + e2iωt â2), (8.1)

where .κ is a coupling constant. One can show that the generators of the Lie group
.SU(1, 1) are realized by

.K+ ≡ 1

2
â†2,K− ≡ 1

2
â2,K0 ≡ 1

4
(a†a + aa†). (8.2)

As such, the Hamiltonian of a degenerate parametric oscillator becomes a linear
combination of the .SU(1, 1) generators .K0, .K+, and .K−

.Ĥ = 2ωK0 + 2κ(e−2iωtK+ + e2iωtK−), (8.3)

which implies that the Hamiltonian (8.1) will preserve the .SU(1, 1) coherent states
under time evolution. The .SU(1, 1) coherent states also appear in the Jaynes-
Cummings model in quantum optics modified by intensity-dependent couplings,
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so that the .SU(1, 1) generators are realized by [126]

.K+ ≡
√

a†aa†,K− ≡ a
√

a†a,K0 ≡ a†a + 1

2
. (8.4)

In the following, we discuss in details the properties of the .SU(1, 1) coherent states.
As we mentioned above, the Lie algebra .su(1, 1) corresponding to the Lie group

.SU(1, 1) has three generators .K0, .K+, and .K−, which obey the commutation
relations

.[K−,K+] = 2K0, [K0,K±] = ±K±. (8.5)

As for the Lie algebra .su(2), one may introduce another basis .{K0,K1,K2} via
.K± = ±i(K1 ± iK2), so that the associated commutation relations are

.[K1,K2] = −iK0, [K0,K1] = iK2, [K2,K0] = iK1. (8.6)

Let us consider an irreducible representation of .SU(1, 1), marked by a number k

which acquires discrete values. In order to specific its rows, one needs another
number .μ which is the eigenvalue of the operator .K0, i.e.,

.K0|k, μ〉 = μ|k, μ〉. (8.7)

In fact, there are two discrete series of representations .D+
k and .D−

k , where

.D+
k : k > 0, μ = k + m,m ∈ {0, 1, 2, · · · }, . (8.8a)

D−
k : k > 0, μ = −k − m,m ∈ {0, 1, 2, · · · }. (8.8b)

Hence, it suffices to discuss the positive discrete series of representations .D+
k instead

of .D−
k , since one can transfer all the results immediately from one to another. As

the Lie group .SU(1, 1) is non-compact, the representations of the discrete series
are all infinite-dimensional. However, in many respects, they are similar to the
finite-dimensional representations of .SU(2), as the basic vector .|k, k + n〉 may be
determined by an integer n ranging from zero to infinity.

From Eqs. (8.5) and (8.7), one may check that the raising and lowering operators
.K+ and .K− obey the identities

.K0K+|k, μ〉 = (μ + 1)K+|k, μ〉, . (8.9a)

K0K−|k, μ〉 = (μ − 1)K−|k, μ〉. (8.9b)

One may also verify that the quadratic Casimir operator

.Ĉ2 ≡ K2
0 − 1

2
(K+K− + K−K+) = K2

0 − K2
1 − K2

2 (8.10)
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is an invariant which commutes with all the generators .K0, .K+, and .K−. By virtue
of Schur’s lemma, the Casimir operator .Ĉ2 is a multiple of the identity, .Ĉ2 = λÎ .
Then Eqs. (8.5) and (8.10) imply that the raising and lowering operators have to
obey the identities

.K+K− = −λÎ + K0(K0 − 1), . (8.11a)

K−K+ = −λÎ + K0(K0 + 1). (8.11b)

In the positive discrete series of representations .D+
k , the norm of the states .K±|k, μ〉

must be non-negative since

.‖K±|k, μ〉‖2 = 〈k, μ|K∓K±|k, μ〉 ≥ 0. (8.12)

This implies that the operators .K+K− and .K−K+ must be positive Hermitian, and
hence the eigenvalues of the operators

. − λÎ + K0(K0 − 1), . (8.13a)

−λÎ + K0(K0 + 1), (8.13b)

must be non-negative. By contrast, in the compact .SU(2) case, these eigenvalues
must be non-positive. Applying the lowering operators .K− repeatedly on .|k, μ〉,
one of the following alternatives occurs: (i) the chain never terminates; (ii) the chain
terminates. In case (i), the positivity conditions hold for all .μ implies that .λ < − 1

4 ,
where .μ is a half-integer. In case (ii), by letting .|k, k〉 be the last nonvanishing state
in the descending chain, it follows that

.K−|k, k〉 = 0, (8.14)

and thus .K+K−|k, k〉 = [−λÎ + K0(K0 − 1)]|k, k〉 = 0, which implies that

.λ = k(k − 1). (8.15)

The case .k = 0 corresponds to the identity representation with .K±|k, k〉 = 0 and
.Ĉ2 = 0. The case .k > 0 corresponds to an infinite chain of states .|k, k〉, .|k, k + 1〉,
.· · · , obtained by applying the raising operator .K+ repeatedly on the state .|k, k〉,
which all exist and are different from zero since

.‖K+|k, μ〉‖2 = 〈k, μ|K−K+|k, μ〉 (8.16)

= 〈k, μ|(2K0 + K+K−)|k, μ〉
= 2(k + m)‖|k, μ〉‖2 + ‖K+|k, μ〉‖2 > 0,
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where .μ ≡ k + m > 0 in the positive discrete series of representations. From
Eqs. (8.9a)–(8.9b) and Eqs. (8.11a)–(8.11b), one could write

.K+|k, μ〉 = √
(μ + k)(μ − k + 1)|k, μ + 1〉, . (8.17a)

K−|k, μ〉 = √
(μ − k)(μ − k − 1)|k, μ − 1〉. (8.17b)

As such, all the states can be obtained from .|k, k〉 by the application of the raising
operator .K+

.|k, k + m〉 =
√

�(2k)

m!�(2k + m)
(K+)m|k, k〉. (8.18)

In order to construct the .SU(1, 1) coherent states, one needs to choose a fixed
reference state. One may choose the lowest-weight state .|k, k〉. By the extremal
state .|k, k〉, one can find the .U(1) isotropy subgroup of .SU(1, 1) which leaves .|k, k〉
invariant, i.e.,

.h|k, k〉 = eiϕ |k, k〉, h ∈ U(1), (8.19)

where the general form of the subgroup element h can be expressed as

.h = eiαK0 , (8.20)

so that .ϕ = kα. From this one obtains a unique coset decomposition with respect
to the isotropy subgroup .U(1), .g = �h, where .g ∈ SU(1, 1), .h ∈ U(1), and .� are
coset representatives of .SU(1, 1)/U(1) given by

.�(ξ) ≡ exp(ξK+ − ξ∗K−). (8.21)

An arbitrary group transformation .g ∈ SU(1, 1) acting on the lowest-weight state
.|k, k〉 can be expressed as .g|k, k〉 = �(ξ)h|k, k〉 = eiϕ |k, ξ 〉, where

.|k, ξ 〉 ≡ �(ξ)|k, k〉 = exp(ξK+ − ξ∗K−)|k, k〉 (8.22)

gives the first definition of the .SU(1, 1) coherent states. By using the Baker-
Campbell-Hausdorff (BCH) formula, one may write the coset representative .�(ξ)

in the normal form as

.�(ξ) = exp(ζK+) exp(γK0) exp(−ζ ∗K−), (8.23)
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where .ζ ≡ ξ/|ξ | tanh |ξ | and .γ ≡ −2 ln cosh |ξ | = ln(1 − |ζ |2). Similarly, one may
write the coset representative .�(ξ) in the anti-normal form as

.�(ξ) = exp(−ζ ∗K−) exp(−γK0) exp(ζK+). (8.24)

As the parameters .ζ and .γ are independent of k, it is sufficient to verify the
above formulas in the non-unitary faithful representation with .K0 ≡ 1

2σ3 and
.K± ≡ ∓ 1

2 (σ1 ± iσ2), where .σj are the Pauli matrices. Indeed, a direct computation
yields

.K+ =
(

0 −1
0 0

)
,K− =

(
0 0
1 0

)
,K0 = 1

2

(
1 0
0 −1

)
. (8.25)

Hence one may write the coset representative in the non-unitary faithful represen-
tation as

.�(ξ) = exp

(
0 −ξ

−ξ∗ 0

)
=

(
cosh |ξ | − ξ

|ξ | sinh |ξ |
− |ξ |

ξ
sinh |ξ | cosh |ξ |

)

. (8.26)

From Eq. (8.23), one may also express the coset representative as

.�(ξ) = exp

(
0 −ζ

0 0

)
exp

( γ
2 0
0 − γ

2

)
exp

(
0 0

−ζ ∗ 0

)
(8.27)

=
(

1 −ζ

0 1

) (
e

γ
2 0

0 e− γ
2

) (
1 0

−ζ ∗ 1

)

=
(

e
γ
2 + |ζ |2e− γ

2 −ζe− γ
2

−ζ ∗e− γ
2 e− γ

2

)

.

Comparing Eqs. (8.26) and (8.27) yields the desired relationships among the
parameters .ξ , .ζ , and .γ

.ζ = ξ

|ξ | tanh |ξ |, γ = −2 ln cosh |ξ | = ln(1 − |ζ |2). (8.28)

Applying .�(ξ) to the lowest-weight state .|k, k〉 and using its normal form, i.e.,
Eq. (8.23), one arrives at an equivalent definition for the .SU(1, 1) coherent states

.|k, ζ 〉 ≡ exp(ζK+) exp(γK0) exp(−ζ ∗K−)|k, k〉 (8.29)

= (1 − |ζ |2)k exp(ζK+)|k, k〉

= (1 − |ζ |2)k
∞∑

m=0

√
�(2k + m)

�(2k)m! ζm|k, k + m〉.
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As .|ζ | ≡ tanh |ξ | < 1 for .|ξ | ∈ R, one may show that the .SU(1, 1) coherent state
space is simply the Poincaré disk (or Bolyai-Lobachevsky plane), which describes
the two-dimensional hyperbolic geometry. To see this, one may compute the overlap
between two arbitrary .SU(1, 1) coherent states as

.〈k, ζ ′|k, ζ 〉 = (1 − |ζ ′2|)k(1 − |ζ 2|)k
(1 − ζ ′∗ζ )2k

, (8.30)

which yields

.|〈k, ζ ′|k, ζ 〉| = (cosh
d

2
)−2k, (8.31)

where d is the distance between the two points .ζ and .ζ ′ on the Poincaré disk
determined by

. sinh
d

2
= |ζ ′ − ζ |

√
1 − |ζ ′|2√1 − |ζ |2 , . (8.32a)

cosh
d

2
= |1 − ζ ′∗ζ |

√
1 − |ζ ′|2√1 − |ζ |2 . (8.32b)

Hence, the Poincaré distance between two arbitrary points .ζ and .ζ ′ on the Poincaré
disk is given by

.d(ζ ′, ζ ) ≡ 2 arctan

( |ζ ′ − ζ |
|1 − ζ ′∗ζ |

)
. (8.33)

A direct computation yields the Poincaré metric

.ds2 = 4dζdζ ∗

(1 − |ζ |2)2
≡ λ2(ζ, ζ ∗)dζdζ ∗, (8.34)

where .λ(ζ, ζ ∗) = 2(1 − ζ ζ ∗)−1 is a real and positive function of .ζ and .ζ ∗. Hence,
the Gaussian curvature of the Poincaré disk is given by

.K = − 4

λ2

∂

∂ζ

∂

∂ζ ∗ log λ = −1. (8.35)

In other words, the .SU(1, 1) coherent state space, i.e., the Poincaré disk, is a
homogeneous manifold with a constant negative curvature .K = −1.

Using Eq. (8.29), one can derive the resolution of identity in terms of the .SU(1, 1)

coherent states. To show this, one needs the hyperbolic polar coordinates .(τ, φ) in
the Poincaré disc, defined by .ζ ≡ eiφ tanh τ

2 . In the hyperbolic polar coordinates,
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the Poincaré metric becomes

.ds2 = 4dζdζ ∗

(1 − |ζ |2)2
= dτ 2 + sinh2 τdφ2, (8.36)

which corresponds to the metric tensor

.g =
(

1 0
0 sinh2 τ

)
. (8.37)

Hence, the area element of the .SU(1, 1) coherent state space has the form

.d� ≡ √
gdτ ∧ dφ = sinh τdτ ∧ dφ. (8.38)

From Eq. (8.29), a direct computation yields

.

∫
d�|k, ζ 〉〈k, ζ | =

∞∑

m,n=0

√
�(2k + m)�(2k + n)

�(2k)m! · �(2k)n! (8.39)

·
∫

d�(1 − |ζ |2)2k(ζ ∗)nζm · |k, k + m〉〈k, k + n|

In the hyperbolic polar coordinates .(τ, φ), the integral appearing in Eq. (8.39) can
be evaluated as

.

∫
d�(1 − |ζ |2)2k(ζ ∗)nζm (8.40)

=
∫ ∞

0

∫ 2π

0
sech4k

(τ

2

)
ei(m−n)φ tanhm+n

(τ

2

)
sinh τdτdφ

=2πδmn

∫ ∞

0
sech4k

(τ

2

)
tanh2m

(τ

2

)
sinh τdτ

=4πδmn

∫ 1

0
(1 − s)2k−2smds

=4πδmn

�(m + 1)�(2k − 1)

�(2k + m)
,

where .s ≡ tanh2 (
τ
2

)
and .2k − 1 �= 0. For .k = 1/2, the integral diverges, as the

Gamma function .�(2k − 1) has a simple pole at .k = 1/2. Substitution of Eq. (8.40)
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into Eq. (8.39) immediately yields

.

∫
d�|k, ζ 〉〈k, ζ | (8.41)

=4π

∞∑

m=0

�(2k + m)

�(2k)m!
m!�(2k − 1)

�(2k + m)
|k, k + m〉〈k, k + m|

= 4π

2k − 1

∞∑

m=0

|k, k + m〉〈k, k + m| = 4π

2k − 1
I.

In other words, for .k > 1/2, the resolution of identity becomes

.

∫
dμk|k, ζ 〉〈k, ζ | = I, . (8.42a)

dμk ≡ 2k − 1

4π
d� = 2k − 1

π

d2ζ

(1 − |ζ |2)2
, (8.42b)

where .d2ζ ≡ dRe(ζ )dIm(ζ ). Besides the resolution of identity, one may also
derive the expectation value of a product of .SU(1, 1) generators with respect to the
coherent states .|k, ζ 〉, i.e., .〈k, ζ |Kp

−K
q

0 Kr+|k, ζ 〉. To evaluate this, one may use the
following formula

.Kr+|k, ζ 〉 = (1−|ζ |2)k
∞∑

m=0

√
�(2k + r + m)(r + m)!

�(2k)(m!)2 ζm|k, k + r +m〉, (8.43)

which can be directly obtained from Eq. (8.29). Without loss of generality, one can
assume that .p ≥ r , so that .s ≡ p − r is a non-negative integer. Then, a direct
computation yields

.〈k, ζ |Kp
−K

q

0 Kr+|k, ζ 〉 = (1 − |ζ |2)2kζ s · (8.44)

∞∑

n=0

�(2k + p + n)(p + n)!
�(2k)n!(s + n)! (k + p + n)q |ζ |2n.

In particular, the expectation values of the .SU(1, 1) generators .K0, .K+, and .K−
with respect to the coherent states .|k, ζ 〉 are

.K0 ≡ 〈k, ζ |K0|k, ζ 〉 = k
1 + |ζ |2
1 − |ζ |2 , . (8.45a)

K− ≡ 〈k, ζ |K−|k, ζ 〉 = k
2ζ

1 − |ζ |2 , . (8.45b)

K+ ≡ 〈k, ζ |K+|k, ζ 〉 = k
2ζ ∗

1 − |ζ |2 . (8.45c)
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One can now show that the elements .K0, .K−, and .K+, together with a suitable
Poisson bracket on the coherent state space, would induce a phase space represen-
tation of the .SU(1, 1) group. In fact, on the Poincaré disk, one may define a Poisson
bracket .{·, ·} in the form

.{f, g} ≡ (1 − |ζ |2)2

2ik

(
∂f

∂ζ

∂g

∂ζ ∗ − ∂f

∂ζ ∗
∂g

∂ζ

)
, (8.46)

where f and g are two arbitrary functions of .ζ and .ζ ∗ on the Poincaré disk. After
a straightforward calculation, one can show that the elements .K0, .K− and .K+ carry
the algebraic structure

.i{K−,K+} = 2K0, i{K0,K±} = ±K±. (8.47)

Such an algebraic structure relates to the original .SU(1, 1) Lie algebra structure via
the correspondence

.〈k, ζ |[Ki,Kj ]|k, ζ 〉 = i{Ki ,Kj }. (8.48)

Instead of using the coordinates .ζ and .ζ ∗, it is more convenient to define a set of
canonical coordinates .(q, p) via

.
q + ip√

4k
≡ ζ

√
1 − |ζ |2 . (8.49)

Then the Poisson bracket .{·, ·} in the new coordinate systems has the canonical form

.{f, g} = ∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
, (8.50)

which induces a phase space structure on the .SU(1, 1) coherent state space, i.e., the
Poincaré disk, where the phase space representations of the .SU(1, 1) generators are

.K0 = k + q2 + p2

2
,K∓ = (q ± ip)

√

k + q2 + p2

4
. (8.51)

8.2 SU(3) Coherent States

For another example of the generalized coherent states, one may consider the
coherent states associated with the Lie algebra .su(3,C) of the simply-connected
simple compact Lie group SU.(3,C). In the fundamental representation, the Lie
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algebra .su(3,C) is generated by eight Hermitian traceless matrices .Ta ≡ λa/2 for
.1 ≤ a ≤ 8, where .λa are the Gell-Mann matrices

.λ1 ≡
⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ , λ2 ≡
⎛

⎝
0 −i 0
i 0 0
0 0 0

⎞

⎠ , λ3 ≡
⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠ , (8.52)

λ4 ≡
⎛

⎝
0 0 1
0 0 0
1 0 0

⎞

⎠ , λ5 ≡
⎛

⎝
0 0 −i

0 0 0
i 0 0

⎞

⎠ ,

λ6 ≡
⎛

⎝
0 0 0
0 0 1
0 1 0

⎞

⎠ , λ7 ≡
⎛

⎝
0 0 0
0 0 −i

0 i 0

⎞

⎠ , λ8 ≡ 1√
3

⎛

⎝
1 0 0
0 1 0
0 0 −2

⎞

⎠ ,

in analogy with the Pauli matrices. The Gell-Mann matrices .λa are trace orthonor-
mal, i.e., .Tr(λaλb) = 2δab, in analogy with the trace orthogonal relations that the
Pauli matrices obey. Hence, the generators .Ta of the .su(3,C) Lie algebra are nor-
malized to a value of .

1
2 , i.e., .Tr(TaTb) = 1

2δab. Let us denote the .su(3,C) structure

constants in the Gell-Mann basis as .fabc, defined by .[Ta, Tb] = i
∑8

c=1 fabcTc. One
can prove that the structure constants .fabc are real and totally antisymmetric under
the interchange of any pair of indices. To show this, one needs the following relation

. Tr([Ta, Tb]Tc) = Tr(i
∑

c′
fabc′Tc′Tc) = i

2

∑

c′
fabc′δcc′ = i

2
fabc. (8.53)

Using the cyclic property of the trace, .Tr(ABC) = Tr(CAB), one obtains

. Tr([Ta, Tb]Tc) = Tr(TaTbTc − TbTaTc + TaTcTb − TaTcTb) (8.54)

= Tr(Ta[Tb, Tc] − TbTaTc + TaTcTb)

= Tr([Tb, Tc]Ta),

which implies immediately that .fabc = fbca = −fcba . Also, as the generators
.Ta are Hermitian matrices, one obtains .[Ta, Tb]† = [T †

b , T
†
a ] = −[Ta, Tb], which

yields .−[Ta, Tb] = [Ta, Tb]† = −i
∑8

c=1 f ∗
abcTc. This implies immediately that

the structure constants are all real, .fabc = f ∗
abc. The .su(3,C) Lie algebra has

three independent .su(2,C) subalgebras generated by the elements .{T1, T2, T3},
.{T4, T5,

1
2 (

√
3T8 + T3)}, and .{T6, T7,

1
2 (

√
3T8 − T3)}. Hence, one obtains .f123 = 1,

.f345 = 1
2 , .f458 =

√
3

2 , .f367 = − 1
2 , and .f678 =

√
3

2 . Also, the structure constants
.fabc vanish when the generators .Ta and .Tb are in the same .su(2,C) subalgebra, and
the generator .Tc is in another .su(2,C) subalgebra. Finally, the commutation relation
.[λ1, λ4] = iλ7 yields .[T1, T4] = i

2T7 and .f147 = 1
2 , and similar computations yield

.f246 = f257 = 1
2 and .f156 = − 1

2 .



8.2 SU(3) Coherent States 161

In any irreducible representation of the Lie algebra .su(3,C), there exist two
independent simultaneously diagonalized traceless Hermitian matrices which span
the Cartan subalgebra .h. In the fundamental representation, the two simultaneously
diagonalized traceless Hermitian matrices in the Cartan subalgebra .h are already
known, which are .T3 and .T8, respectively. Hence, one may write the two elements
in the Cartan subalgebra as

.H1 ≡ T3 = 1

2

⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠ ,H2 ≡ T8 = 1

2
√

3

⎛

⎝
1 0 0
0 1 0
0 0 −2

⎞

⎠ , (8.55)

which automatically satisfy the commutation relation .[H1,H2] = 0. For the
remaining six generators which are not in the Cartan subalgebra .h, one can guess the
forms of the shift operators .Eα by noting that the Gell-Mann matrices .λ1 and .λ2 are
in analogy with the Pauli matrices .σx and .σy in the .su(2,C) subalgebras generated
by .{T1, T2, T3} and similarly for .λ4 and .λ5 and .λ6 and .λ7. Hence, one may infer that
the shift operators .Eα are proportional to .T1 ± iT2, .T4 ± iT5, and .T6 ± iT7. One
can now confirm that these operators are indeed proportional to the shift operators
and find the roots by evaluating the commutators with the elements in the Cartan
subalgebra .h. A direct computation yields

.[T3, T1 ± iT2] = ±(T1 ± iT2), [T8, T1 ± iT2] = 0, . (8.56a)

[T3, T4 ± iT5] = ±1

2
(T4 ± iT5), [T8, T4 ± iT5] = ±

√
3

2
(T4 ± iT5), . (8.56b)

[T3, T6 ± iT7] = ∓1

2
(T6 ± iT7), [T8, T6 ± iT7] = ±

√
3

2
(T6 ± iT7). (8.56c)

A similar computation yields

.[T4 + iT5, T4 − iT5] = T3 + √
3T8, . (8.57a)

[T6 − iT7, T6 + iT7] = T3 − √
3T8, . (8.57b)

[T1 + iT2, T1 − iT2] = 2T3, . (8.57c)

[T4 + iT5, T6 − iT7] = T1 + iT2, . (8.57d)

[T4 − iT5, T1 + iT2] = T6 − iT7, . (8.57e)

[T1 + iT2, T6 + iT7] = T4 + iT5. (8.57f)
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1

2
-

1

-
2

3
-

3

Fig. 8.1 The root space diagram for the Lie algebra .su(3,C). The six roots .±α1, .±α2, and .±α3
are of unit length and form a regular hexagon. Here .α2 and .α2 are the simple roots which form a
basis of the root system

Hence, the roots .±α1, .±α2, and .±α3 of the Lie algebra .su(3,C) are determined by
(see Fig. 8.1)

.α1 ≡
(

1

2
,

√
3

2

)

,α2 ≡
(

1

2
,−

√
3

2

)

,α3 ≡ (1, 0), (8.58)

where .α1 and .α2 are the simple roots which form a basis of the root system of the
Lie algebra .su(3,C), as .α3 is linearly dependent on .α1 and .α2, i.e., .α3 = α1 + α2.
Hence, the commutation relations between the shift operators and the elements of
the Cartan subalgebra .h become .[H, E±α1 ] = ±α1E±α1 , .[H, E±α2 ] = ±α2E±α2 ,
and .[H, E±α3 ] = ±α3E±α3 , and the remaining commutations between the shift
operators are

.[Eα1 , E−α1 ] = α1 · H, [Eα2 , E−α2 ] = α2 · H, . (8.59a)

[Eα3 , E−α3 ] = α3 · H, [Eα1 , Eα2 ] = N1,2Eα3 , . (8.59b)

[Eα−1 , Eα3 ] = N−1,3Eα2 , [Eα3 , Eα−2 ] = N3,−2Eα1 (8.59c)

where .H ≡ (H1,H2), .N1,2 = N−1,3 = N3,−2 = 1√
2
, and

.E±α1 ≡ 1√
2
(T4 ± iT5), E±α2 ≡ 1√

2
(T6 ∓ iT7), E±α3 ≡ 1√

2
(T1 ± iT2). (8.60)
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In the fundamental representation, the six shift operators .E±α1 , .E±α2 , and .E±α3 can
be written as

.Eα1 = 1√
2

⎛

⎝
0 0 1
0 0 0
0 0 0

⎞

⎠ , Eα−1 = 1√
2

⎛

⎝
0 0 0
0 0 0
1 0 0

⎞

⎠ , . (8.61a)

Eα2 = 1√
2

⎛

⎝
0 0 0
0 0 0
0 1 0

⎞

⎠ , Eα−2 = 1√
2

⎛

⎝
0 0 0
0 0 1
0 0 0

⎞

⎠ , . (8.61b)

Eα3 = 1√
2

⎛

⎝
0 1 0
0 0 0
0 0 0

⎞

⎠ , Eα−3 = 1√
2

⎛

⎝
0 0 0
1 0 0
0 0 0

⎞

⎠ . (8.61c)

Now we see that the Lie algebra .su(3,C) has eight elements

.{H1,H2, E±α1, E±α2 , E±α3} (8.62)

in the Cartan basis, where the two elements .H1 and .H2 commute and span the Cartan
subalgebra .h. The root system of the Lie algebra .su(3,C) is determined by

.α±1 ≡ ±
(

1

2
,

√
3

2

)

,α±2 ≡ ±
(

1

2
,−

√
3

2

)

,α±3 ≡ ±(1, 0), (8.63)

where .α1 and .α2 are two simple positive roots, i.e., every positive roots are the linear
combination of them with non-negative integer coefficients, e.g., .α3 = α1 + α2. As
all the six roots have the same unit length, the remaining commutation relations in
the Cartan basis are .[H, E±αj

] = ±αjE±αj
and

.[Eαj
, E−αj

] = αj · H , [E±α1 , E±α2 ] = ± 1√
2
E±α3 , . (8.64a)

[E±α3 , E∓α2 ] = ± 1√
2
E±α1, [E∓α1 , E±α3 ] = ± 1√

2
E±α2 , (8.64b)

where .1 ≤ j ≤ 3. From the commutation relations, one can readily show that the
elements .H1, .H2, and .E±α2 span the maximal compact subalgebra .k of .su(3,C)

and the elements .E±α1 and .E±α3 span the orthogonal complementary space .p of .k.
Indeed, the commutation relations between the elements .H1, .H2, and .E±α2 are

.[H1,H2] = 0, [H, E±α2] = ±α2E±α2 , [Eα2 , E−α2 ] = α2 · H , (8.65)
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which implies the relation .[k, k] ⊆ k. Similarly, the commutation relations between
the elements .E±α1 and .E±α3 are

.[E±α1 , E±α3 ] = 0, [E∓α1 , E±α3 ] = ± 1√
2
E±α2 , . (8.66a)

[Eα1 , E−α1 ] = α1 · H , [Eα3 , E−α3 ] = H1, (8.66b)

which implies the relation .[p, p] ⊆ k. Notice that both .E1 and .E3 and .E−1 and .E−3
span a commutative subalgebra of .p. Finally, the commutation relations between
the elements in .k and the elements in the orthogonal complementary space .p are
.[H, E±α1 ] = ±α1E±α1 , .[H, E±α3 ] = ±α3E±α3 and

.[E±α2 , E±α1 ] = ∓ 1√
2
E±α3 , [E±α2 , E∓α1 ] = 0, . (8.67a)

[E±α2 , E±α3 ] = 0, [E±α2 , E∓α3 ] = ± 1√
2
E∓α1, (8.67b)

which implies the relation .[k, p] = p. Let us denote .U(Hi) and .U(Eα) as the
representation matrix of the generators .Hi of the Cartan subalgebra and the shift
operators .Eα in the fundamental representation of .su(3,C). Then, the generators
of the maximal compact subalgebra .k in the fundamental representation of .su(3,C)

have the form

.U(H1) = 1

2

⎛

⎝
1 0 0
0 −1 0
0 0 0

⎞

⎠ , U(H2) = 1

2
√

3

⎛

⎝
1 0 0
0 1 0
0 0 −2

⎞

⎠ , . (8.68a)

U(Eα2) = 1√
2

⎛

⎝
0 0 0
0 0 0
0 1 0

⎞

⎠ , U(Eα−2) = 1√
2

⎛

⎝
0 0 0
0 0 1
0 0 0

⎞

⎠ . (8.68b)

Similarly, the generators of the orthogonal complementary subspace .p in the
fundamental representation of .su(3,C) are

.U(Eα1) = 1√
2

⎛

⎝
0 0 1
0 0 0
0 0 0

⎞

⎠ , U(Eα−1) = 1√
2

⎛

⎝
0 0 0
0 0 0
1 0 0

⎞

⎠ , . (8.69a)

U(Eα3) = 1√
2

⎛

⎝
0 1 0
0 0 0
0 0 0

⎞

⎠ , U(Eα−3) = 1√
2

⎛

⎝
0 0 0
1 0 0
0 0 0

⎞

⎠ . (8.69b)
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As a result, a general element .k of the maximal compact subalgebra .k in the
fundamental representation of .su(3,C) has the form

.U(k) ≡ iλ1ρ(H1) + iλ2ρ(H2) + ηα2ρ(Eα2) − η∗
α2

ρ(E−α2) (8.70)

=

⎛

⎜⎜
⎝

iλ1
2 + iλ2

2
√

3
0 0

0 −iλ1
2 + iλ2

2
√

3
−1√

2
η∗

α2

0 1√
2
ηα2

−iλ2√
3

⎞

⎟⎟
⎠ ≡

(
a 0
0 b

)
,

where .λ1, λ2 ∈ R, .ηα2 ∈ C, and .ρ(k) are anti-Hermitian and traceless, i.e., .U(k)† =
−U(k) and .Tr(U(k)) = 0. Similarly, a general element .p of the orthogonal
complementary subspace .p in the fundamental representation of .su(3,C) has the
form

.U(p) ≡ ηα1ρ(Eα1) + ηα3ρ(Eα3) − η∗
α1

ρ(E−α1) − η∗
α3

ρ(E−α3) (8.71)

=

⎛

⎜⎜
⎝

0 1√
2
ηα3

1√
2
ηα1

− 1√
2
η∗

α3
0 0

− 1√
2
η∗

α1
0 0

⎞

⎟⎟
⎠ ≡

(
0 η

−η† 0

)
,

where .ηα1 , ηα3 ∈ C, and .U(p) are anti-Hermitian and traceless, i.e., .U(p)† =
−U(p) and .Tr(U(p)) = 0.

We now discuss the weights for the fundamental representation of the Lie algebra
.su(3,C). For a rank-l semisimple Lie algebra .g, the basis vectors .|μ〉 in the
representation space are chosen to be the common eigenvectors of the commuting
operators .Hi , .Hi |μ〉 = μi |μ〉, or equivalently .H|μ〉 = μ|μ〉. The l-dimensional
vector .μ ≡ (μ1, · · · , μl), whose components are the eigenvalues .μj , is called the
weight of the basis vector .|μ〉. For our .su(3,C) example, as the two generators .H1
and .H2 of the Cartan subalgebra are diagonal, we may choose the basic vectors
as

.|μ1〉 =
⎛

⎝
1
0
0

⎞

⎠ , |μ2〉 =
⎛

⎝
0
1
0

⎞

⎠ , |μ3〉 =
⎛

⎝
0
0
1

⎞

⎠ . (8.72)

Then a direct computation yields the weights of the Lie algebra .su(3,C)

.μ1 =
(

1

2
,

1

2
√

3

)
,μ2 =

(
−1

2
,

1

2
√

3

)
,μ3 =

(
0,− 1√

3

)
, (8.73)

which are not independent and satisfy the relation .μ1 + μ2 + μ3 = 0. Comparing
Eqs. (8.63) and (8.73), one immediately obtains the relations between the weights



166 8 Examples of Coherent States Beyond SU(2)

Fig. 8.2 The planar weight
diagram of the fundamental
representation of the Lie
algebra .su(3,C) together
with the three roots .α1, .α2,
and .α3
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and the roots of the Lie algebra .su(3,C) (see Fig. 8.2)

.α1 = μ1 − μ3,α2 = μ3 − μ2,α3 = μ1 − μ2. (8.74)

Hence, the partial order on the weights of the fundamental representation of .su(3,C)

is .μ1 > μ3 > μ2, as both .μ1 − μ3 and .μ3 − μ2 are positive roots. Applying the
shift operators .Eα on .|μ1〉, .|μ2〉 and .|μ3〉 immediately yields

.E−α1 |μ1〉 = 1√
2
|μ3〉, E−α3 |μ1〉 = 1√

2
|μ2〉,Eα|μ1〉 = 0,∀α �= −α1,−α3;

Eα2 |μ2〉 = 1√
2
|μ3〉, Eα3 |μ2〉 = 1√

2
|μ1〉,Eα|μ2〉 = 0,∀α �= α2,α3;

Eα1 |μ3〉 = 1√
2
|μ1〉, E−α2 |μ3〉 = 1√

2
|μ2〉,Eα|μ3〉 = 0,∀α �= α1,−α2.

As a result, all the basic states in the fundamental representation of .su(3,C) can be
determined by the highest weight state .|μ1〉 as

.|μ2〉 = √
2E−α3 |μ1〉, |μ3〉 = √

2E−α1 |μ1〉. (8.75)

Another representation of the Lie algebra .su(3,C) is obtained by taking the
negative of the complex conjugate of the matrices in the fundamental representation.
The reason is that by taking the complex conjugate of the commutation relation
.[Ta, Tb] = i

∑8
c=1 fabcTc and using the fact that the structure constants are real,

one can obtain .[T †
a , T

†
b ] = −i

∑8
c=1 fabcT

†
c , which implies that .[−T

†
a ,−T

†
b ] =

i
∑8

c=1 fabc(−T
†
c ), i.e., the matrices .−T

†
a satisfy the same algebraic equation as the

matrices .Ta themselves. A representation obtained in this way is called the complex



8.2 SU(3) Coherent States 167

conjugate representation. In such a representation, one may still choose the basic
vectors as

.|ν1〉 =
⎛

⎝
1
0
0

⎞

⎠ , |ν2〉 =
⎛

⎝
0
1
0

⎞

⎠ , |ν3〉 =
⎛

⎝
0
0
1

⎞

⎠ . (8.76)

Applying the diagonal generators .−H
†
1 and .−H

†
2 on the basic vectors yields

. − H†|ν1〉 = ν1|ν1〉,−H†|ν2〉 = ν2|ν2〉,−H†|ν3〉 = ν3|ν3〉, (8.77)

where we have used the fact that .H
†
i = Hi in any unitary irreducible representation,

and the weights .ν1, .ν2, and .ν3 of the Lie algebra .su(3,C) in the complex conjugate
representation are given by

.ν1 =
(

−1

2
,− 1

2
√

3

)
, ν2 =

(
1

2
,− 1

2
√

3

)
, ν3 =

(
0,

1√
3

)
. (8.78)

which are not independent and satisfy the relation .ν1 + ν2 + ν3 = 0. Notice that
the weights of the complex conjugate representation can be obtained by reflecting
the weights of the fundamental representation through the origin, i.e., .νk = −μk for
.k = 1, 2, and 3. A direct computation yields the relations between the weights and
the roots in the complex conjugate representation of the Lie algebra .su(3,C) (see
Fig. 8.3)

.α1 = ν3 − ν1,α2 = ν2 − ν3,α3 = ν2 − ν1. (8.79)

Fig. 8.3 The planar weight
diagram of the complex
conjugate representation of
the Lie algebra .su(3,C)

together with the three roots
.α1, .α2, and .α3
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3
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H
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H
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Hence, the partial order on the weights of the complex conjugate representation
of .su(3,C) is .ν2 > ν3 > ν1, as both .ν2 − ν3 and .ν3 − ν1 are positive roots. If
one denotes the representation matrices of the shift operators .Eα in the complex
conjugate representation as .Ū (Eα), then the representation matrix in the complex
conjugate representation is related to that of the fundamental representation by
.Ū (Eα) = −U(E

†
α) = −U(E−α). Hence, the representation matrices of the

generators of the Cartan subalgebra and the shift operators in the complex conjugate
representation are

.Ū (H1) = 1

2

⎛

⎝
−1 0 0
0 1 0
0 0 0

⎞

⎠, Ū (H2) = 1

2
√

3

⎛

⎝
−1 0 0
0 −1 0
0 0 2

⎞

⎠ , . (8.80a)

Ū (Eα1) = 1√
2

⎛

⎝
0 0 0
0 0 0

−1 0 0

⎞

⎠, Ū (Eα−1) = 1√
2

⎛

⎝
0 0 −1
0 0 0
0 0 0

⎞

⎠ .. (8.80b)

Ū (Eα2) = 1√
2

⎛

⎝
0 0 0
0 0 −1
0 0 0

⎞

⎠, Ū (Eα−2) = 1√
2

⎛

⎝
0 0 0
0 0 0
0 −1 0

⎞

⎠ , . (8.80c)

Ū (Eα3) = 1√
2

⎛

⎝
0 0 0

−1 0 0
0 0 0

⎞

⎠, Ū (Eα−3) = 1√
2

⎛

⎝
0 −1 0
0 0 0
0 0 0

⎞

⎠ . (8.80d)

In the complex conjugate representation, the application of the shift operators .Eα

on the basic vectors .|ν1〉, .|ν2〉 and .|ν3〉 yields

.Eα1 |ν1〉 = − 1√
2
|ν3〉, Eα3 |ν1〉 = − 1√

2
|ν2〉,Eα|ν1〉 = 0,∀α �= α1,α3;

E−α2 |ν2〉 = − 1√
2
|ν3〉, E−α3 |ν2〉 = − 1√

2
|ν1〉,Eα|ν2〉 = 0,∀α �= −α2,−α3;

E−α1 |ν3〉 = − 1√
2
|ν1〉, Eα2 |ν3〉 = − 1√

2
|ν2〉,Eα|ν3〉 = 0,∀α �= −α1,α2.

In order words, all the weights of the complex conjugate representation of .su(3,C)

can be determined by the highest weight state .|ν2〉 via

.|ν1〉 = −√
2E−α3 |ν2〉, |ν3〉 = −√

2E−α2 |ν2〉. (8.81)

It implies that, in the complex conjugate representation of the Lie algebra .su(3,C),
the elements .H1, .H2, and .E±α1 span the maximal compact subalgebra .k, whereas
the elements .E±α2 and .E±α3 form the orthogonal complementary subspace .p.
(as .Eα|ν2〉 = 0 for all positive roots and one negative root .−α1, except for the
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negative roots .−α2 and .−α3). Hence, a general element .k of the maximal compact
subalgebra .k in the complex conjugate representation of .su(3,C) has the form

.Ū (k) ≡ iλ1ρ̄(H1) + iλ2ρ̄(H2) + ηα1 ρ̄(Eα1) − η∗
α1

ρ̄(E−α1) (8.82)

=

⎛

⎜⎜
⎝

− iλ1
2 − iλ2

2
√

3
0 1√

2
η∗

α1

0 iλ1
2 − iλ2

2
√

3
0

− 1√
2
ηα1 0 iλ2√

3

⎞

⎟⎟
⎠ ,

where .λ1, λ2 ∈ R, .ηα1 ∈ C, and .Ū (k) are anti-Hermitian and traceless. Similarly,
a general element .p of the orthogonal complementary subspace .p in the complex
conjugate representation of .su(3,C) has the form

.Ū (p) ≡ ηα2Ū (Eα2) + ηα3Ū (Eα3) − η∗
α2

Ū (E−α2) − η∗
α3

Ū (E−α3) (8.83)

= 1√
2

⎛

⎝
0 η∗

α3
0

−ηα3 0 −ηα2

0 η∗
α2

0

⎞

⎠ ,

where .ηα2 , ηα3 ∈ C, and .Ū (p) are anti-Hermitian and traceless. Here, a direct
computation yields

.Ū (p)2 = −1

2

⎛

⎝
|ηα3 |2 0 ηα2η

∗
α3

0 |ηα3 |2 + |ηα2 |2 0
ηα3η

∗
α2

0 |ηα2 |2

⎞

⎠ , (8.84)

Ū (p)2k+1 =
[
−1

2
(|ηα3 |2 + |ηα2 |2)

]k

Ū (p) ≡ (−1)kθ2kŪ (p).

Hence, if we choose .G = SU.(3,C) and .H ≡ exp(k) as its maximal isotropy
subgroup, then in the complex conjugate representation of SU.(3,C), a general
element .� in the coset space .G/H has the form

.Ū (�) ≡ Ū (exp(p)) = I + sin θ

θ
Ū(p) + 1 − cos θ

θ2 Ū (p)2. (8.85)

As a consequence, the SU.(3,C) coherent state in the complex conjugate represen-
tation becomes

.|ν2,�〉 ≡ Ū (�)|ν2〉 =
⎛

⎜
⎝

1√
2
η∗

α3
sin θ

θ

cos θ
1√
2
η∗

α2
sin θ

θ

⎞

⎟
⎠ . (8.86)
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One immediately sees that the SU.(3,C) coherent states in the complex conjugate
representation are normalized to unity, i.e., .〈ν2,�|ν2,�〉 = 1. Similarly, a
general element .p of the orthogonal complementary subspace .p in the fundamental
representation of .su(3,C) has the form

.U(p) ≡ ηα1U(Eα1) + ηα3U(Eα3) − η∗
α1

U(E−α1) − η∗
α3

U(E−α3) (8.87)

=

⎛

⎜⎜
⎝

0 1√
2
ηα3

1√
2
ηα1

− 1√
2
η∗

α3
0 0

− 1√
2
η∗

α1
0 0

⎞

⎟⎟
⎠ ≡

(
0 η

−η† 0

)
,

and a general element .� ∈ SU(3,C)/ exp(k) in the fundamental representation of
.SU(3,C) has the form

.U(�) ≡ U(exp(p)) = I + sin θ

θ
Ū(p) + 1 − cos θ

θ2 Ū (p)2 (8.88)

=
(

cos θ sin θ
θ

η

− sin θ
θ

η† I 2 − 1−cos θ
θ2 η†η

)

,

=
(√

1 − zz† z

−z†
√

I 2 − z†z

)

,

where .θ ≡ √
ηη† and .z ≡ sin θ

θ
η = η

sin
√

η†η√
η†η

. Hence, the SU.(3,C) coherent state

in the fundamental representation has the form

.|μ1,�〉 ≡ U(�)|μ1〉 =
⎛

⎜
⎝

cos θ

− 1√
2
η∗

α3
sin θ

θ

− 1√
2
η∗

α1
sin θ

θ

⎞

⎟
⎠ . (8.89)

One immediately sees that the SU.(3,C) coherent states in the fundamental rep-
resentation are normalized to unity, i.e., .〈μ1,�|μ1,�〉 = 1. As a remark, both the
fundamental and the complex conjugate representations of SU.(3,C) are degenerate
in the sense that the highest weight .� in such presentations is orthogonal to some
root .α, i.e., .�·α = 0. For the former case, we have .μ1·α2 = 0 (see Fig. 8.2), whereas
for the latter case, we have .ν2 · α1 = 0 (see Fig. 8.3). For an arbitrary irreducible
representation of SU.(3,C), the highest weight .� can always be expressed as
.� ≡ λ1μ1 +λ2ν2 with .λ1 �= 0 and .λ2 �= 0. Such a representation is non-degenerate,
as

.� · α1 = λ1

2
�= 0,� · α2 = λ2

2
�= 0,� · α3 = λ1 + λ2

2
�= 0, (8.90)
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where we have used the fact that the highest weight .� ≡ λ1μ1 + λ2ν2 always
located in the right-half plane such that .

1
2 (λ1 + λ2) > 0. In such a non-degenerate

representation, the maximal isotropy subgroup is .U(1) ⊗ U(1) with generators
.{H1,H2}. Hence, the geometry of the coherent state space is not the coset space
.SU(3)/U(2) but a larger coset space .SU(3)/U(1) ⊗ U(1).

Exercises

8.1. Verify that the overlap between two SU(1, 1) coherent states is

.〈k, ζ ′|k, ζ 〉 = (1 − |ζ ′2|)k(1 − |ζ 2|)k
(1 − ζ ′∗ζ )2k

.

8.2. Show that the Gaussian curvature of a metric ds2 = λ2(z, z∗)dzdz∗ has the
form

.K = − 4

λ2

∂

∂ζ

∂

∂ζ ∗ log λ.

8.3. Verify the following expressions for K0, K+, and K−

.K0 = k
1 + |ζ |2
1 − |ζ |2 ,K− = k

2ζ

1 − |ζ |2 ,K+ = k
2ζ ∗

1 − |ζ |2 .

8.4. Verify the following Poisson brackets between K0, K− and K+

.i{K−,K+} = 2K0, i{K0,K±} = ±K±.

8.5. Verify the following relation for arbitrary coordinates (ζ, ζ ∗) and (z, z∗)

.
∂f

∂ζ

∂g

∂ζ ∗ − ∂f

∂ζ ∗
∂g

∂ζ
=

(
∂f

∂z

∂g

∂z∗ − ∂f

∂z∗
∂g

∂z

) (
∂z

∂ζ

∂z∗

∂ζ ∗ − ∂z

∂ζ ∗
∂z∗

∂ζ

)

8.6. Show that the Poisson bracket {·, ·} in the coordinate (z, z∗) defined via z ≡√
2kζ/

√
1 − |ζ |2 has the form

.{f, g} ≡ 1

i

(
∂f

∂z

∂g

∂z∗ − ∂f

∂z∗
∂g

∂z

)
.
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9.1 Generalized Coherent States

In the previous chapters, we have extensively discussed the construction of coherent
states by the utilization of group-theoretical methodologies with underlying groups
H.(4), SU.(2), SU.(1, 1), and SU.(3). Of course, the breath of physics is not simply
confined to these groups. In this chapter, we will discuss in detail the generalization
of coherent states for arbitrary Lie groups, which is known as the Gilmore-
Perelomov group-theoretic coherent state. Such a generalization will provide a
unified framework for Glauber’s coherent states, spin coherent states, squeezed
coherent states, and all other coherent states based on Lie group theory. The
group-theoretical construction of coherent states was carried out almost entirely
independently by Askold M. Perelomov [8] and Robert Gilmore [9, 10] in 1972.
Remarkably, the key idea behind the group-theoretical construction was proposed
by J. R. Klauder nearly a decade earlier [6,7]. In the following, we shall first discuss
some generic properties of Lie group and Lie algebra, especially the structure theory,
classification, and representation theory of complex semisimple Lie algebra, which
are much needed for us to discuss generalized coherent states.

In order to classify structures of Lie algebras, the concepts of subalgebra and
ideal are essential. Let .m, n be subsets of a Lie algebra .g, and let .[m, n] be the
vector subspace spanned by all elements in .g of the form .[M,N ] (M ∈ m, N ∈
n. A vector subspace .h of .g is called a Lie subalgebra of .g, if .[h, h] ⊆ h, i.e.,
for arbitrary .X, Y ∈ h, .[X, Y ] ∈ h. In other words, a Lie subalgebra .h of .g is a
vector subspace of .g which is also closed under the Lie bracket. An ideal .i of .g

is a Lie subalgebra of .g which satisfies a stronger condition: .[g, i] ⊆ i, i.e., for
arbitrary .X ∈ g and .Y ∈ i, .[X, Y ] ∈ i. An ideal of a Lie algebra is also called
a invariant subalgebra, as it is mapped into itself by all elements of the algebra.
Evidently, the Lie algebra .g itself and the single element subalgebra .{0} ∈ g are
both ideals of the Lie algebra .g. Also, if .i and .j are ideals of a Lie algebra .g, then
.[i, j] is also an ideal of .g. The reason is simple. From the Jacobi identity, one obtains
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174 9 Lie Group Generalizations of Coherent States

.[g, [x, y]] = −[x, [y, g]]−[y, [g, x]] ∈ [i, j] for any .a ∈ g, .x ∈ i and .y ∈ j. Hence,

.[g, [i, j]] ⊆ [i, j], and thus .[i, j] is an ideal of .g.
As an example, the special linear Lie algebra of order n, denoted as .sl(n,R),

is the Lie algebra of .n × n matrices with real entries and trace zero. It is a Lie
subalgebra and is also an ideal of the general linear Lie algebra .gl(n,R). The reason
is that for arbitrary .X, Y ∈ gl(n,R), .Tr[X, Y ] = Tr(XY − YX) = 0, and thus
.[X, Y ] ∈ sl(n,R).

We now turn our attention to the structure theory of Lie algebras. Let us begin
with the concept of simple Lie algebra. A simple Lie algebra is a Lie algebra
.g which is non-abelian and has no other ideals besides .{0} and .g itself. A basic
property of a simple lie algebra .g is that it satisfies .[g, g] = g. The reason is that as
.[g, g] is an ideal of the simple lie algebra .g, it is either .{0} or .g itself. But since .g is
non-abelian, the only choice is .[g, g] = g. In other words, the simple Lie algebras
regenerate themselves under commutation. This nice property is also retained for the
semisimple Lie algebra, which is a direct sum of simple Lie algebras. The reason
is simple. For simplicity, one may let .g be a direct sum of two simple Lie algebras
.g1 and .g2, and then one obtains .[g1 + g2, g1 + g2] = [g1, g1] + [g2, g2] = g1 + g2,
which means .[g, g] = g.

With the above discussions, we are now ready to study the central result in the
structure theory of simple Lie algebras over complex numbers, namely, the root
space decomposition or Cartan decomposition, which is a complete classification
scheme for these algebras. The key is the existence of a maximal commuting Lie
subalgebra, of dimension l, called the Cartan subalgebra, denoted as .h. If one
denotes the bases of the Cartan subalgebra .h as .H1,H2, · · · ,Hl , one immediately
obtains the commutation relations .[Hi,Hj ] = 0 for .1 ≤ i, j ≤ l. Notice that the
choice of the Cartan subalgebra .h is not unique. However, all different choices of .h

are isomorphic and will have the same dimension l, known as the rank of the Lie
algebra. Then, a simple complex Lie algebra .g is the direct sum of the l-dimensional
Cartan subalgebra .h and all the one-dimensional root spaces .gα

.g = h ⊕
(⊕

α∈�

gα

)
, (9.1)

where .� is a root system which consists of a finite set of nonzero vectors .α in the
l-dimensional Euclidean space .R

l , known as the roots of the semisimple Lie algebra
.g.

The roots are required to satisfy the following conditions: (i) the roots span the
Euclidean space .R

l ; (ii) the only scalar multiples of a root .α ∈ � that belong to .�

are .α itself and .−α; (iii) for every root .α ∈ �, the set .� is closed under reflection
through the hyperplane perpendicular to .α; and (iv) if .α and .β are roots in .�, then
the projection of .β onto the line through .α is an integer or half-integer multiple of .α.
In other words, for any two roots .α and .β, the number .〈β,α〉 ≡ 2(β ·α)/(α ·α) is an
integer. For a given root system .�, one may always choose a set of positive roots,
which is a subset .�+ ∈ � such that (i) for every root .α ∈ �+, the opposite root
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.−α 	∈ �+; (ii) for any two roots .α,β ∈ �+, if .α+β ∈ �, then .α+β ∈ �+. If a set
of positive roots is chosen, the subset .�− ∈ � which consists of all opposite roots
.−α of the roots .α ∈ �+ is called the set of negative roots. A set of positive roots
can be constructed by choosing a hyperplane not containing any root and setting .�+
to be the set of all the roots lying on the same side of the hyperplane. An element
of .�+ is called a simple positive root if it cannot be written as the sum of two
positive roots .α,β ∈ �+. It follows that the set of positive simple roots is a basis of
the Euclidean space .R

l which satisfies the condition: every positive root is a linear
combination of simple positive roots with non-negative integer coefficients.

Let us denote .α ≡ (α1, α2, · · · , αl). Then for any nonzero roots .α ∈ �, there is
a unique element .Eα ∈ gα such that .[Hi,Eα] = αiEα for any .Hi ∈ h. Moreover, if
.α+β is a nonzero root, it follows that .[Eα, Eβ ] is a multiple of .Eα+β , while if .α+β

is not a root, then .[Eα, Eβ ] = 0. Finally, for the case .α + β = 0, the commutator of
.Eα and .Eβ is an element in .h, i.e., .[Eα, E−α] = α ·H with .H ≡ (H1,H2, · · · ,Hl).
As such, the canonical commutation relations between the elements of a Lie algebra
.g in the Cartan basis become

.[Hi,Hj ] = 0, . (9.2a)

[Hi,Eα] = αiEα, . (9.2b)

[Eα, E−α] = α · H, . (9.2c)

[Eα, Eβ ] = Nα,βEα+β , (α + β 	= 0). (9.2d)

Before we start the detailed discussion of the generalized coherent states, we shall
recapitulate Glauber’s coherent state, .|α〉 ≡ D̂(α)|0〉, which is obtained by applying
a displacement operator .D̂(α) on the vacuum state .|0〉 of the harmonic oscillator. In
fact, the displacement operator .D̂(α) ≡ exp{αâ† − α∗â} is simply a representation
of theHeisenberg-Weyl group in the Fock space. Here, a Heisenberg-Weyl group is
a Lie group whose Lie algebra is theHeisenberg-Weyl algebra generated from four
elements .{n̂, â†, â, Î }, subject to the nontrivial Lie brackets .[â, â†] = Î , .[n̂, â] =
â†, and .[n̂, â] = −â. A general element of the Heisenberg-Weyl group (denoted as
.H4) may be written as

.g = exp{αâ† − αâ} exp{i(δn̂ + ϕÎ )} = D̂(α) exp{i(δn̂ + ϕÎ )}. (9.3)

Hence, any group transformation g of .H4 acting on the vacuum state .|0〉 can be
identified with Glauber’s coherent state, up to a phase factor .eiϕ

.g|0〉 = D̂(α) exp{i(δn̂ + ϕÎ )}|0〉 = eiϕD̂(α)|0〉 = eiϕ |α〉. (9.4)

Accordingly, the group-theoretical formulation of coherent states consists of three
inputs: a Lie group, its unitary representation on a Hilbert space, and a fixed
reference state. With this group-theoretical approach, one can readily generalize the
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concept of coherent states to arbitrary dynamical systems whose Hamiltonians are
constructed by the elements of a Lie algebra.

In the most general setting, the group-theoretical algorithm for constructing
coherent states requires three inputs: (a) a topological group G; (b) a continuous
unitary irreducible representation V of G by unitary operators .Û on a Hilbert
space .H; and (c) a reference state .|�0〉 within the Hilbert space. With these
three inputs, one might naïvely define the coherent states as .Û (g)|�0〉 for those
.g ∈ G. However, one cannot parametrize the generalized coherent states in this
simple manner, as two group elements may correspond to the same state. In
quantum mechanics, two vectors .|ψ1〉 and .|ψ2〉 in .H correspond to the same state
if they only differ by a phase factor, .|ψ1〉 = eiϕ |ψ2〉. Hence, one sees that two
vectors .Û (g1)|�0〉 and .Û (g2)|�0〉 in .H correspond to the same state if and only
if .Û (g−1

2 g1)|�0〉 = eiϕ |�0〉. It immediately leads to the important concept of
stabilizer subgroup (also called the isotropy subgroup). An isotropy subgroup
H of G is a subgroup of G such that for all .h ∈ H , .Û (h)|�0〉 = eiϕ |�0〉. In
other words, two vectors .Û (g1)|�0〉 and .Û (g2)|�0〉 in .H correspond to the same
state if and only if two group elements .g1 and .g2 belong to the same left coset, i.e.,
.g1H = g2H , or equivalently .g−1

2 g1 ∈ H . In this regard, the generalized coherent
states can be parametrized by elements in the coset space .G/H ≡ {gH | g ∈ G},
i.e., the set of equivalence classes of elements of G where two are regarded as
equivalent if they differ by right multiplication with an element in H .

The following are several remarks about the group-theoretical algorithm. First,
as we shall see below, the irreducibility of the representation V of G is crucial,
as it is one of the necessary conditions for the over-completeness properties of the
generalized coherent states. Second, the coset space .G/H does not necessarily form
a group, unless H is a normal subgroup of G which satisfies .gH = Hg for every
group element .g ∈ G. But the coset space .G/H forms a homogeneous space,
a space in which “all points are the same” instead. In particular, if G is a Lie
group and H is a closed Lie subgroup of G such that the coset space .G/H is
connected, then the coset space is a smooth manifold referred to as the space of
Klein geometry, which generalizes the usual Euclidean, spherical, projective, and
hyperbolic geometries.

More precisely, the output of the group-theoretical algorithm gives the coherent
states, which is done in three steps: (a) amaximal isotropy subgroupH ofGwhich
is a subgroup of G that consists of all the group elements .h ∈ G that will leave the
reference state .|�0〉 unchanged up to a phase factor, .h|�0〉 = eiϕ |�0〉, and is not
a subgroup of any of the other isotropy subgroups; (b) a coset space .G/H such
that for every group element .g ∈ G, there is a unique left coset decomposition of
g in H—.g = �h for .g ∈ G, .h ∈ H , and .� ∈ G/H ; and (c) the coherent states
.|�〉 ≡ Û (�)|�0〉 which are parametrized by elements in the coset space .G/H . In
other words, the coherent state space is in one-to-one correspondence with the set
space .G/H . Moreover, since .Û (�) are unitary operators, the generalized coherent
states are normalized to unity

.〈�|�〉 = 〈�0|Û (�−1)Û(�)|�0〉 = 〈�0|�0〉 = 1. (9.5)
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The following are several remarks on the constructions of generalized coherent
states. The coherent states constructed in the group-theoretical algorithm depend on
the choice of the group G, its representation on .H, and the reference state .|�0〉.
Hence, there are various possible constructions of the coherent states utilizing the
group-theoretical algorithm which possesses different properties. First, the group
G may be an arbitrary topological group in general, as in Gilmore’s construction.
One may impose additional structure on G, i.e., a smooth manifold structure, to
make it a Lie group, as in Perelomov’s construction. Perelomov’s more restrictive
choice for G allows always for the construction of BCH formulas. One may also
impose additional structures on G, i.e., a compact manifold structure in the sense
of a “manifold without boundary,” to make it a compact Lie group. Second, the
unitary irreducible representation V of G may be arbitrary, as in Perelomov’s
construction. But as in Gilmore’s construction, one may also require that G be a
locally compact topological group and demand that the representation V of G to be
square-integrable, i.e., there exists nonzero vectors .|φ〉, |ψ〉 ∈ H such that

.

∫
G

|〈φ|Û (g)|ψ〉|2dμG(g) < ∞, (9.6)

where .μG is the left Haar measure on G, which assigns an invariant volume to
subsets of G, in the sense that .μG is a left translation invariant on G such that
.μG(gS) = μG(S) for all .g ∈ G and all measurable subsets .S ∈ G. The square
integrability assumption adopted here is crucial as it guarantees the existence of the
over-completeness relations for the generalized coherent states. Third, the reference
state .|�0〉 ∈ H may be an arbitrary state, as in Perelomov’s construction. However,
one may also require that .|�0〉 is the eigenstate of an unperturbed Hamiltonian.
In particular, if G is a simple Lie group, then one may choose .|�0〉 to be an
extremal state, e.g., the highest-weight state or the lowest-weight state in the
square-integrable irreducible highest weight representation .V �. Here, the highest-
weight state .|�,�〉 of the square-integrable irreducible irreducible representation
.V � is defined by .Eα|�,�〉 = 0 for all positive roots .α ∈ �+ in the root space.

To summarize, if one were to demand that the generalized coherent states are
normalized to unity, over-complete, and allow for the applications of BCH formulas,
one needs to consider a Lie group G, and a square-integrable unitary irreducible
representation .V � of G in the group-theoretical algorithm for constructing coherent
states. Besides, it is useful to choose the reference state .|�0〉 to be a ground
state of some unperturbed Hamiltonians, which becomes the extremal states of the
irreducible representation .V � of G when the Hamiltonian is linear in the elements
of G in the absence of interaction. In this regard, the coset space .G/H that the
generalized coherent states belong to is constructed by the exponential map of the
shift-down operators and their conjugate operators, where the shift-down operators
.E−α obey .E−α|�,�〉 	= 0 when acting on the highest-weight state.

To be specific, let us consider a Lie group G corresponding to a finite-
dimensional semisimple Lie algebra .g. In the Cartan basis, there are two types
of operators .Hi and .Eα , where the operators .Hi are diagonal in any unitary
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irreducible representation and .Eα are the “shift operators” which obey .H
†
i = Hi

and .E
†
α = E−α . Every group element .g ∈ G can be written as the exponential of

anti-Hermitian matrix which is a complex linear combination of .Hi and .Eα . Let us
denote .� to be the highest weight of an irreducible unitary representation .V � of G;
the highest-weight state .|�,�〉, which is often the ground state of the unperturbed
Hamiltonian, satisfies the following properties: (i) .|�,�〉 is annihilated by all the
shift-up operators .Eα with .α being a positive root, .Eα|�,�〉 = 0,∀α ∈ �+; (ii)
.|�,�〉 is the eigenstate of .Hi with an eigenvalue .
i , .Hi |�,�〉 = 
i |�,�〉; and
(iii) .|�,�〉 is annihilated by some shift-down operators .Eα with .α ∈ �− and is
mapped to the states .|�,� + β〉 with a lower weight for other .Eβ with .β ∈ �−:

.Eα|�,�〉 = 0, for some α ∈ �−, . (9.7a)

Eβ |�,�〉 = |�,� + β〉 × factor, for other β ∈ �−. (9.7b)

Then the generalized coherent states can be explicitly written as .|�,�〉 ≡ �|�,�〉,
where .� is a generalized “displacement operator” which has one-to-one correspon-
dence with the elements in the coset space .G/H

.� = exp
∑
β

(ηβEβ − η∗
βE−β), (9.8)

where .ηβ are some complex parameters and the summation is restricted to those
negative roots .β ∈ �− such that .Eβ |�,�〉 	= 0.

9.2 General Properties of Coherent States

To begin with, we consider the geometric properties of the generalized coherent
states. As the generalized coherent states .|�,�〉 are in one-to-one correspondence
with the elements of the coset space .G/H , the space of coherent states and the
coset space are topologically equivalent. More importantly, the coset space admits
three different geometric structures: (i) a complex structure along with an atlas
of charts to an open disk in .C

n such that the transition maps are holomorphic;
(ii) a Riemannian structure equipped with a Riemannian metric which measures
distance, area and volume in the space; and (iii) a symplectic structure equipped
with a non-degenerate closed 2-form, which provides a way of measuring area in
the space with a changing shape.

To discuss the complex structure of the coset space, let us recall that the
generalized coherent states .|�,�〉 for a semisimple Lie group G can be explicitly
expressed as

.|�,�〉 = exp
∑
β

(ηβEβ − η∗
βE−β)|�,�〉, (9.9)
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where the summation is restricted to those roots which satisfy .Eβ |�,�〉 	= 0. It
shows that the generalized coherent states are in one-to-one correspondence with
the elements of the coset space .G/H . As the Lie algebra .g of the Lie group G is
semisimple, it has the Cartan decomposition .g = k ⊕ p, where .k is the Lie algebra
of the maximal isotropy subgroup H which forms a subalgebra of .g, also known as
the maximal compact subalgebra when .g is a compact semisimple Lie algebra,
and .p is the Lie algebra of the coset space .G/H which forms the orthogonal
complementary subspace of .k. Here, .p = ∑

β(ηβEβ − η∗
βE−β) is spanned by

the shift operators .Eβ and .E−β with .β ∈ �− and .Eβ |�,�〉 	= 0. Precisely, the Lie
subalgebra .k of .g and its orthogonal complementary subspace .p satisfy the relations

.[k, k] ⊆ k, [k, p] ⊆ p, [p, p] ⊆ k, (9.10)

such that .k is a Lie subalgebra and any subalgebra of .p is commutative.
We now go back to the discussion of the geometric properties of the generalized

coherent states. Let G be a compact semisimple Lie group and .g be its Lie algebra,
and then in the fundamental representation of .g, the maximal compact subalgebra
.k and its orthogonal complementary subspace .p which satisfy .[k, k] ⊆ k, .[k, p] ⊆ p

and .[p, p] ⊆ k have the form

.U(k) ≡
(
a 0
0 b

)
, U(p) ≡

(
0 η

−η† 0

)
,∀k ∈ k,p ∈ p, (9.11)

where .a is a .m × m matrix, .b is an .n × n matrix, and .η is a .m × n matrix.
Here, n and m are the numbers of the shift operators .E−α with .α ∈ �+ which
satisfy .E−α|�,�〉 	= 0 or .E−α|�,�〉 = 0, respectively. Let H be the maximal
isotropy subgroup of G whose Lie algebra is .k, and then the coset space .G/H in the
fundamental representation can be written in a matrix form as

.U(�) =
(√

Im − zz† z

−z†
√

In − z†z

)
,� ∈ G/H, (9.12)

where

.z ≡ sin
√

ηη†√
ηη†

η = η
sin

√
η†η√

η†η
. (9.13)

Similarly, for a non-compact semisimple Lie group G and its Lie algebra .g, the
maximal compact subalgebra .k of .g and its orthogonal complementary subspace .p

in the fundamental representation have the form

.U(k) ≡
(
a 0
0 b

)
, U(p) ≡

(
0 η

η† 0

)
,∀k ∈ k,p ∈ p, (9.14)
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so that the coset space .G/H in the fundamental representation can be written in a
matrix form as

.U(�) =
(√

Im + zz† z

z†
√

In + z†z

)
,� ∈ G/H, (9.15)

where

.z ≡ sinh
√

ηη†√
ηη†

η = η
sinh

√
η†η√

η†η
. (9.16)

The difference in the geometries of compact and non-compact groups are manifested
in the trigonometric and hyperbolic functions in Eqs. (9.13) and (9.16), respectively.
Besides the complex coordinates .z, one may also introduce the complex projective
coordinates of .G/H via

.τ (z) ≡ z√
In ∓ z†z

, (9.17)

where the minus and plus signs are for compact and non-compact groups, respec-
tively. Hence, the inverse mapping .z(τ ) has the form

.z(τ ) = τ√
In ± τ †τ

, (9.18)

where the plus and minus signs are for compact and non-compact groups, respec-
tively. Using the complex projective coordinates, any group transformations g acting
on the coset space .G/H is a holomorphic mapping of .G/H onto itself,

.gτ = Aτ + B

Cτ + D
, g ≡

(
A B

C D

)
∈ G. (9.19)

Besides the complex structure discussed above, there exists another geometric
structure on the coset manifold .G/H , namely, a Riemannian structure. On the
coset manifold .G/H , a Hermitian metric h can be expressed in terms of the local
coordinates by a Hermitian symmetric tensor as

.h ≡
∑
j,k

hj k̄dτj ⊗ dτ ∗
k , hjk̄ ≡ ∂2 lnK(τ , τ ∗)

∂τj ∂τ ∗
k

, (9.20)

where .hjk̄ are the components of a positive-definite Hermitian matrix .(hjk̄), i.e.,

.(hjk̄)
† = (hjk̄) and .w†(hjk̄)w > 0 for all .w ∈ C

n, and the function .K(τ , τ ∗)
is called the kernel function of .G/H . Here, j and .k̄ are summed over all the
matrix elements of .τ and .τ † given by Eq. (9.17), where .τ is an .m × n matrix. A
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Hermitian metric h on the coset manifold .G/H induces a Riemannian metric g on
the underlying manifold as the real part of h, i.e., .g ≡ 1

2 (h + h∗), which can be
expressed in terms of the local coordinates as

.g = 1

2

∑
j,k

hj k̄(dτj ⊗ dτ ∗
k + dτ ∗

k ⊗ dτj ), (9.21)

where .hk̄j = hjk̄ . The Riemannian metric g is called a Kähler metric on the coset
manifold .G/H , which has the properties

.�l̄
jk = �l

j̄k
= �l̄

j k̄
= �l

j̄ k̄
= 0, (9.22)

where .�l
jk are the Christoffel symbols. The kernel function is obtained from the

unnormalized form of the coherent states .||�, τ 〉 on the coset manifold .G/H by
using the Baker-Campbell-Hausdorff (BCH) formula

.|�,�〉 ≡ exp
∑
α

(ηαEα − η∗
αE−α)|�,�〉 (9.23)

= 1√
K(τ , τ ∗)

exp
∑
α

(ταEα)|�,�〉

= 1√
K(τ , τ ∗)

||�, τ 〉,

where the summation is restricted to those roots which obey .E−α|�,�〉 	= 0. In the
fundamental representation of a semisimple Lie group, the explicit expression of the
kernel function is

.K(τ , τ ∗) = det(In ± τ †τ )±1, (9.24)

where the plus and minus signs are for compact and non-compact groups, respec-
tively. Finally, a group-invariant measure of the coset manifold .G/H is given by

.dμ ≡ const × det(hjk̄)
∏
i

dzidz∗
i

π
. (9.25)

As an example, one may consider the coherent states of a harmonic oscillator
which possesses the Heisenberg-Weyl algebra .h4 with four generators .{n̂, â†, â, Î }.
The coherent state space is then constructed by applying the exponential mapping
of the subspace .p spanned by .{â†, â} of .h4

.�(α) ≡ exp(αâ† − α∗â) ∈ H4/U(1) ⊗ U(1), (9.26)
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where .α ∈ C such that the coset space .H4/U(1) ⊗ U(1) is isomorphic to the
ordinary complex plane, and .U(1) ⊗ U(1) is the maximal isotropy subgroup of .H4
with respect to the vacuum state .|0〉, which possesses the infinitesimal generators
.â†â and I . A group unitary transformation .g = exp{βâ† − β∗â + iηn̂ + iδÎ )} with
.β ∈ C and .η, δ ∈ R acting on the coset space .H4/U(1) ⊗ U(1) is determined by

.g�(α) = �(α′)h, h ∈ U(1) ⊗ U(1), . (9.27a)

α′ = αeiη + β

iη
(eiη − 1). (9.27b)

When we restrict .g ∈ H4/U(1) ⊗ U(1), Eq. (9.27b) describes a translation on
the complex plane via .α′ = α + β. The geometric structure of the coset space
.H4/U(1) ⊗ U(1) can also be understood via the coherent state of the Heisenberg-
Weyl group .H4, which is defined by .�(α) acting on the vacuum state .|0〉

.|α〉 ≡ �(α)|0〉 = exp(αa† − α∗a)|0〉 = e− 1
2αα∗

eαâ† |0〉 ≡ e− 1
2αα∗ ||α〉, (9.28)

where the normalization constant of the unnormalized form of the coherent states
gives the kernel function, .K(α, α∗) ≡ 〈α||α〉 = eαα∗

. Hence, a direct computation
yields the standard Riemannian metric on the complex plane

.g = 1

2
(dα ⊗ dα∗ + dα∗ ⊗ dα) = dx ⊗ dx + dy ⊗ dy, (9.29)

where .α ≡ x + iy.
Using the Hermitian metric h, one may define another important geometric

structure on the coset manifold .G/H , namely, a symplectic structure .(G/H,ω)

with a differential 2-form .ω which is closed .dω = 0 and of maximal rank .ωn 	= 0. In
terms of the Hermitian metric h, one may explicitly define the closed non-degenerate
2-form as minus the imaginary part of h, i.e., .ω ≡ i

2 (h − h̄), which can be written
in terms of the local coordinates as

.ω = i
∑
j,k

hj k̄dτj ∧ dτ ∗
k , (9.30)

where the wedge product .dτj ∧ dτ ∗
k of the vectors .dτj and .dτ ∗

k is an element of the
space of antisymmetric tensors defined via the embedding .dτj ∧ dτ ∗

k �→ 1
2 (dτj ⊗

dτ ∗
k − dτ ∗

k ⊗ dτj ). As the coset manifold has a symplectic structure .(G/H,ω), one
may equip it with a natural Poisson bracket .{·, ·}ω via

.{f, g}ω ≡ 1

i

∑
j,k

hj k̄

(
∂f

∂τj

∂g

∂τ ∗
k

− ∂g

∂τj

∂f

∂τ ∗
k

)
, (9.31)

where f and g are two functions defined on the coset manifold and .hjk̄ are the
components of the inverse of the matrix .(hjk̄). One may verify that by performing
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the coordinate transformation .z(τ ) in Eq. (9.18), one obtains a diagonal non-
degenerate closed 2-form

.ω = i

nm∑
j=1

dzj ∧ dz∗
j , (9.32)

which induces a diagonal Poisson bracket .{·, ·}ω in the form

.{f, g}ω = 1

i

nm∑
j=1

(
∂f

∂zj

∂g

∂z∗
j

− ∂g

∂zj

∂f

∂z∗
j

)
. (9.33)

If one further performs a coordinate transformation .zj ≡ (qj + ipj )/
√
2 and .z∗

j ≡
(qj − ipj )/

√
2, one obtains the symplectic 2-form .ω = ∑nm

j=1 dqj ∧ dpk , and the
standard Poisson bracket used in classical mechanics

.{f, g}ω =
nm∑
j=1

(
∂f

∂qj

∂g

∂pj

− ∂g

∂qj

∂f

∂pj

)
. (9.34)

Besides the geometric properties mentioned above, there are some other impor-
tant Hilbert-space properties that the generalized coherent states have in common,
namely, the non-orthogonality and the over-completeness. In the most general
setting, one may consider a general Lie group G and its maximal isotropy subgroup
.H ⊂ G. Then in an arbitrary unitary irreducible representation .V � of G, the
generalized coherent state .|�,�〉 ≡ �|�0〉 is in one-to-one correspondence with
the elements .� in the coset space .G/H , where .|�0〉 is an arbitrary reference state.
As such, the generalized coherent states .|�,�〉 are generally non-orthogonal, expect
for a set of measure zero. The reason is that when applying arbitrary elements
.g, g′ ∈ G on the reference state .|�0〉, one obtains

.g|�0〉 = �h|�0〉 = eiϕ(h)|�,�〉, (9.35)

g′|�0〉 = �′h′|�0〉 = eiϕ(h′)|�,�′〉,

where .h, h′ ∈ H,�,�′ ∈ G/H . Hence, the overlap between the two generalized
coherent states .|�,�〉 and .|�,�′〉 becomes

.〈�,�|�,�′〉 = ei(ϕ(h′)−ϕ(h))〈�0|g−1g′|�0〉 (9.36)

= ei(ϕ(h′)−ϕ(h))〈�0|g′′|�0〉 	= 0,

where we have used the fact that .g−1 ∈ G and .g−1g′ ≡ g′′ ∈ G. From the above
discussion, one immediately sees that the generalized coherent states are normalized
to unity: .〈�,�|�,�〉 = 〈�0|g−1g|�0〉 = 〈�0|�0〉 = 1. Moreover, applying the
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unitary representation .Û (g1) of an arbitrary element .g1 ∈ G on the coherent state
.|�,�〉, one simply obtains another coherent state, up to a phase factor

.Û (g1)|�,�〉 = e−iϕ(h)Û (g1)Û(g)|�0〉 (9.37)

= e−iϕ(h)Û (g1g)|�0〉
= ei(ϕ(h′)−ϕ(h))|�,�′〉,

where .g′ ≡ g1g = �′h′. Turning to the problem of completeness, one may notice
that there exists an invariant measure .dμG on the group G, which induces an
invariant measure .dμ� on the coset space .G/H . One may now consider the operator

.Ô ≡
∫

dμ�|�,�〉〈�,�|. (9.38)

One can readily show that the operator .Ô is invariant under the transformation of G

.Û (g1)ÔÛ(g1)
−1 =

∫
dμ�Û(g1)|�,�〉〈�,�|Û (g1)

−1 (9.39)

=
∫

dμ�ei(ϕ(h′)−ϕ(h))|�,�′〉〈�,�′|e−i(ϕ(h′)−ϕ(h))

=
∫

dμ�′ |�,�′〉〈�,�′|,

where we used the fact that .dμ� = dμ�′ is an invariant measure of the coset space
.G/H . As the operator .Ô commutes with all the operators .Û (g1) and thus due to
the irreducibility of the representation .Û of G, the operator .Ô must be a multiple
of the identity operator, according to Schur’s lemma in representation theory. With
an appropriately normalized measure .dμ� on the square-integrable function space
.L2(G/H), one obtains

.

∫
dμ�|�,�〉〈�,�| = Î . (9.40)

Combining with the fact that the coherent states are non-orthogonal in general,
.〈�,�|�,�′〉 	= 0, one concludes that the system of the coherent states .|�,�〉
is over-complete, i.e., it contains subsystems of coherent states which are complete.

Making use of the over-completeness properties, one may expand an arbitrary
state .|�〉 ∈ V � in terms of the coherent states

.|�〉 =
∫

dμ�f�(�)|�,�〉, f�(�) ≡ 〈�,�|�〉, (9.41)
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which immediately yields

.〈�|�〉 =
∫

dμ�′ |f�(�)|2. (9.42)

The function .f�(�) defined on the coset space .G/H is not arbitrary but needs to be
continuous in .� which satisfy the relation

.f�(�) =
∫

dμ�′ 〈�,�|�,�′〉f�(�′) ≡
∫

dμ�′K�(�,�′)f�(�′). (9.43)

Hence, the kernel .K�(�,�′) ≡ 〈�,�|�,�′〉 is a reproducing one

.K�(�,�′′) =
∫

dμ�′K�(�,�′)K�(�′,�′′). (9.44)

From Eq. (9.41), one can readily see that there are linear dependences between the
coherent states

.|�,�〉 =
∫

dμ�′K�(�′,�)|�,�′〉 (9.45)

Finally, the scalar product between two arbitrary states .|�〉 and .|� ′〉 can also be
expressed as a coherent state integral over .L2(G/H)

.〈�|� ′〉 =
∫∫

dμ�dμ�′f ∗
�(�)f�(�′)K(�,�′) (9.46)

=
∫

dμ�f ∗
�(�)f�(�),

where we have used Eq. (9.43) in the last step. Conversely, the coherent states can
be expressed in terms of arbitrary diagonal states. Let us consider a complete set of
orthogonal states of .V �, denoted as .|�,λ〉, where

.

∑
λ

|�,λ〉〈�,λ| = I, (9.47)

and .λ is the usualGelfand-Tsetlin pattern which indexes all the basic states in .V λ,
including weight and multiplicity. Thus the coherent states .|�,�〉 can be expressed
in terms of this basis of .V � via

.|�,�〉 = N−1/2(�)
∑
λ

f�,λ(�)|�,λ〉, (9.48)
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where .f�,λ(�) ≡ N1/2(�)〈�,λ|�,�〉 = 〈�,λ||�, τ 〉 is an entire function on the
coset space .G/H .

Similar to the Hilbert-space expansions of arbitrary states in terms of coherent
states, one may expand an arbitrary operator A that acts on .V � in terms of coherent
states

.A =
∫∫

dμ�dμ�′ |�,�〉〈�,�|A|�,�′〉〈�,�′|. (9.49)

Such an expansion induces three special representations, namely, the P , Q, and
W representations, which are analogous to their counterparts for bosonic coherent
states. Thus the coherent states provide a natural phase-space structure and three
useful phase-space distributions for a quantum system, which are discussed below.
The P - andQ-representations for an operatorA that maps .V � onto itself are defined
over the coset space .G/H as

.A ≡
∫

dμ�AP (�,�)|�,�〉〈�,�|, . (9.50a)

AQ(�,�) ≡ 〈�,�|A|�,�〉 =
∫

dμ�′ |K�(�,�′)|2AP (�,�′). (9.50b)

Similar to its counterpart for bosonic coherent states, the density operator .ρ for a
pure coherent state .|�,�〉 is the projection operator .ρ ≡ |�,�〉〈�,�|. But for the
statistical mixtures of the pure coherent states, the density operator is a superposition
of the projection operator .|�,�〉〈�,�|

.ρ =
∫

dμ�P (�,�)|�,�〉〈�,�|, (9.51)

where the function .P(�,�〉, known as the P -representation of the density operator,
can be regarded as a probability distribution function of .� over the coset manifold
.G/H . Similarly, the Q-representation of the density operator has the form

.Q(�,�) ≡ 〈�,�|ρ|�,�〉 =
∫

dμ�P (�,�). (9.52)

Correspondingly, the statistical average of an operator A is given by

.Tr(ρA) =
∫

dμ�Q(�,�)AP (�,�) =
∫

dμ�P (�,�)AQ(�,�). (9.53)
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Based on the P - and Q-distributions, the W -distribution for an operator A is defined
through an integral kernel .χ�(�,�′) via the relations

.AW(�,�) ≡
∫

dμ�′χ�(�,�′)AP (�,�′), . (9.54a)

AQ(�,�) ≡
∫

dμ�′χ�(�,�′)AW(�,�′), (9.54b)

where the integral kernel .χ�(�,�′) obeys .χ∗
�(�,�′) = χ�(�′,�). Substituting

Eq. (9.57a) into Eq. (9.57b) yields

.AQ(�,�) =
∫∫

dμ�′dμ�′′χ�(�,�′)χ�(�′,�′′)AP (�,�′′). (9.55)

Comparing Eqs. (9.55) and (9.50b) immediately yields

.

∫
dμ�′χ�(�,�′)χ�(�′,�′′) = |K�(�,�′′)|2. (9.56)

Hence, the P -, Q-, and W -distributions for the density operator .ρ satisfy the
relations

.W(�,�) ≡
∫

dμ�′χ�(�,�′)P (�,�′), . (9.57a)

Q(�,�) ≡
∫

dμ�′χ�(�,�′)W(�,�′), . (9.57b)

Q(�,�) ≡
∫

dμ�′ |K�(�,�′)|2P(�,�′). (9.57c)

As a first example, for the bosonic coherent states .|α〉 defined on the complex-.α
plane, the integral kernel .χ(α, β) for the W -distribution and the reproducing kernel
.K(α, β) ≡ 〈α|β〉 have the form .χ(α, β) = 2e−2|α−β|2 and .K(α, β) ≡ e−|α−β|2 , so
that

.W(α) ≡ 2
∫

d2β

π
e−2|α−β|2P(β), . (9.58a)

Q(α) ≡ 2
∫

d2β

π
e−2|α−β|2W(β), . (9.58b)

Q(α) ≡
∫

d2β

π
e−|α−β|2P(β). (9.58c)
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Finally, one may show that the inner product between two arbitrary operators A and
B on .V � can also be expressed in terms of the W -distribution

.(A,B) ≡ Tr(A†B) =
∫

dμ�A∗
Q(�,�)BP (�,�) (9.59)

=
∫∫

dμ�dμ�′χ∗
�(�,�′)A∗

W(�,�′)BP (�,�)

=
∫

dμ�′A∗
W(�,�′)BW(�,�′).

Besides the geometric properties of the coset space and the Hilbert-space
properties of the coherent states, there are some additional group-theoretic formulas
that are useful in applications and thus worth discussing. For example, one may
consider the Baker-Campbell-Hausdorff (BCH) formulas, which are the analytic
isomorphism connecting exponentials of the Lie algebraic elements and the products
of exponentials. A first example is the familiar BCH formula for the bosonic
coherent states

.eαa†−α∗a = e− 1
2αα∗

eαa†e−α∗a = e
1
2αα∗

e−α∗aeαa† . (9.60)

In general, employing the Cartan decomposition of the semisimple Lie algebra .g,
i.e., .g = k⊕p, the exponential of a general element .k ∈ p onto the coset space .G/H

can be disentangled as the following product

.� = exp
∑
α

(ηαEα − η∗
αE−α) (9.61)

= (exp
∑
α

ταEα)(exp
∑

i

γiHi)(exp
∑
β

−τ ∗
βE−β)

= (exp
∑
β

−τ ∗
βE−β)(exp

∑
i

−γiHi)(exp
∑
α

ταEα),

where the relation between .τα and .ηα can be derived from the matrix representation
of G. For example, in the fundamental representation of G, the coset space .G/H is
a symmetric space, whose representation matrix can be disentangled in the form

.U(�) =
(√

Im ± zz† z

±z†
√

In ± z†z

)
(9.62)

=
(

Im τ

0 In

) (
exp γ m 0

0 exp γ n

)(
Im 0
±τ † In

)
,
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where the plus and minus signs are for compact and non-compact Lie groups,
respectively. A direct computation yields

.τ = z√
In ± z†z

, exp γ m = Im√
Im ± zz†

, exp γ n =
√

In ± z†z. (9.63)

Exercises

9.1. For an arbitrary m × n matrix η, verify the relations

.
sin

√
ηη†√

ηη†
η = η

sin
√

η†η√
η†η

and
sinh

√
ηη†√

ηη†
η = η

sinh
√

η†η√
η†η

.

9.2. Verify Eqs. (9.27a) and (9.27b) for the Heisenberg-Weyl algebra h4.



10QuantumMany-Body Systems

10.1 Mean-Field Approach with Coherent States

In nature, there are fundamentally two types of particles, namely, bosons and
fermions, for which the basic operators obey different commutation relations and
the corresponding states have distinct statistical properties. Bosons, which carry
intrinsic property of integer spins, such as photons or pairs of electrons, obey the
standard canonical commutation relations and Boson-Einstein statistics, whereas
fermions, which carry intrinsic property of half-integer spins, such as electrons,
obey anti-commutation relations and Fermi-Dirac statistics. The differences of
bosons and fermions are manifested in their different group structures as well as
their associated Hilbert space structures. Indeed, a large part of condensed matter
theory, such as band theory, Fermi liquid theory, superfluidity, superconductivity,
and quantum Hall effect, to name a few, are consequences of this fact [127]. In
practice, quantum systems usually couple these two types of particles. As the
algebras of bosons and fermions commute, their associated coherent states can
be separately constructed. In the following, we focus on the coherent states for
fermions.

The archetypical fermion systems are atoms, molecules, and nuclei. However,
unlike the hydrogen atom and deuteron with specific interactions which can be
solved exactly, many-body systems usually consist of an immense number of
interacting particles, i.e., of the order of .102 in nuclei [17], or of the order of one
valence electron per atom in crystal lattices like solids. The estimation of number
of particles in solids comes from the adiabatic approximation [128], where the
nuclei are considered fixed at their empirically known equilibrium positions, and
also one can divide the atomic electrons into those belonging to closed shells whose
excitation potentials are high, and the relatively loosely bound valence electrons,
such that the effect of closed shells upon the valence electrons can be regarded
as only a static potential. It is exactly such an immense number of particles that
makes exact solutions of many-body systems practically impossible. In this regard,
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the development of many-body theory has been, since the genesis of quantum
mechanics, primarily a search for better approximation schemes. One such scheme
is the variational principle, whose input is a proper choice of good trial wave
function. The main criteria of a good trial wave function are that it can maximize
quantum correlations between particles and that it is simple enough to use. The
coherent states, directly constructed from the dynamical group structure of a system,
are no doubt one of the best candidates as trial wave functions for the many-body
systems.

To start with, let us discuss the algebra of a single-fermion system, of which the
Hamiltonian can be written as a function of the fermionic creation and annihilation
operators .c† and c of a single fermion that obey the standard anti-commutation
relations

.{c, c†} = 1, {c, c} = {c†, c†} = 0. (10.1)

Interestingly, such a system can be described by the familiar SU.(2) dynamical group
[21], whose generators are c, .c†, and .c†c − 1

2 . The generators obey the following
commutation relations:

.[c†, c] = 2(c†c − 1

2
), [c†c − 1

2
, c] = −c, [c†c − 1

2
, c†] = c†. (10.2)

Evidently, the operators .c†, c, and .c†c − 1
2 are in one-to-one correspondence with

the quantum angular momentum operators, i.e., .c† ⇔ J+, .c ⇔ J−, and .c†c − 1
2 ⇔

J0. Hence, the coherent states of a single-fermion system can be constructed by
following the general algorithm for the SU.(2) dynamical group.

As the Hilbert space of a single fermion contains only two states, it can
be realized by the simplest irreducible representation of SU.(2), i.e., spin-1/2
representation, whose basis vectors are .| 12 , 1

2 〉 and .| 12 ,− 1
2 〉. The fermion coherent

states are then constructed as follows:

.|1
2
, ξ 〉 ≡ exp(ξc† − ξ∗c)|1

2
,−1

2
〉 (10.3)

= sin(
θ

2
)e−iϕ |1

2
,
1

2
〉 + cos(

θ

2
)|1
2
,−1

2
〉,

where .ξ ≡ θ
2 e−iϕ and .| 12 , 1

2 〉 ≡ c†| 12 ,− 1
2 〉. Equation (10.3) shows that the

group definition of the fermion coherent states has a natural topological space, i.e.,
SU.(2)/U(1).� S2. Hence, all the results for spin-1/2 coherent states are applicable to
the fermion coherent states. For example, the completeness of the fermion coherent
states is given by

.
1

2π

∫
d�|1

2
, ξ 〉〈1

2
, ξ | = I2, (10.4)
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where .d� ≡ sin θdθdϕ. Similarly, the BCH formula for fermionic algebra can be
expressed as

. exp(ξc† − ξ∗c) = exp(τc†) exp[ln(1 + τ ∗τ)(c†c − 1

2
)] exp(−τ ∗c) (10.5)

= exp(−τ ∗c) exp[− ln(1 + τ ∗τ)(c†c − 1

2
)] exp(τc†),

where .τ ≡ tan θ
2 e−iϕ .

We now discuss a system with r fermions, where the creation and annihilation
operators for the constituting fermions, e.g., the electrons in atomic systems or the
nucleons in a nucleus, obey the anti-commutation relations

.{ci, c
†
j } = δij , {ci, cj } = {c†i , c†j } = 0 (10.6)

for .1 ≤ i, j ≤ r . One can easily construct several distinct algebras from these
operators, which implies that those coherent states constructed from the associated
algebra have different algebraic and geometric properties.

The simplest algebra which can be constructed from the .r2 fermionic pairing
operators .c

†
i cj with .1 ≤ i, j ≤ r is the Lie algebra .u(r), whose commutation

relations are given by

.[c†i cj , c
†
kcl] = δjkc

†
i cl − δilc

†
kcj . (10.7)

Let .Hi ≡ c
†
i ci ; then the set .{Hi |i = 1, 2, · · · , r} constitutes the maximal Abelian

Cartan subalgebra of .u(r), whose commutation relations are simply given by

.[Hi, c
†
j ck] = (δij − δik)c

†
j ck. (10.8)

Hence, the roots .ei − ej with .1 ≤ i, j ≤ r span the root space .Ar−1 of the
multi-fermion .u(r) algebra. Although not directly related to the fermion irreducible
representation of .u(r), the faithful matrix representation of .u(r) is useful. In the
faithful matrix representation of .u(r), each generator corresponds to an .r ×r matrix,
i.e., .c†i cj ⇔ Eij , where .Eij is an .r × r matrix with 1 in the ith row and j th column
and zero otherwise.

In the fully antisymmetric representation of .u(r) labeled by the highest weight
.� ≡ (	1,	2, · · · ,	r) = (1, · · · , 1, 0, · · · , 0) = (1k, 0r−k), the basic states in
the Hilbert space are the set .{|n1, n2, · · · , nr 〉}, with .ni = 0, 1 and .

∑
ni = k.

Clearly, there are .Ck
r = r!/k!(r − k)! basic states in the Hilbert space. Hence, one

immediately obtains

.c
†
i cj |�,�〉 ≡ c

†
i cj |1, · · · , 1, 0, · · · , 0〉 = 0, (10.9)
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where .1 ≤ i 	= j ≤ k or .k + 1 ≤ i 	= j ≤ r . One may verify that the operators
.c
†
i cj with .1 ≤ i ≤ k and .k + 1 ≤ j ≤ r span a subalgebra .u(k) ⊕ u(r − k) of

.u(r), where the corresponding Lie group .U(k) ⊗ U(r − k) is the isotropy subgroup
of .U(r) which keeps the extremal state .|�〉 unchanged. Hence, the coherent states
for the multi-fermion .U(r) group can be defined as

.|�,�〉 ≡ exp
∑
i,j

(ηij c
†
i cj − η∗

ij c
†
j ci)|�,�〉, (10.10)

where .k +1 ≤ i ≤ r , .1 ≤ j ≤ k, and .ηij are some complex parameters. Under such
a definition, one may readily show that the coherent states for the multi-fermion
.U(r) group have a natural topological coset space .U(r)/U(k) ⊗ U(r − k). In the
following, we discuss in detail the completeness relation, the symplectic structure,
and the BCH formula for the multi-fermion U.(r) coherent states.

First of all, according to the general theorem of completeness, the coherent states
.|�,�〉 satisfy the completeness relation

.

∫
dμ�|�,�〉〈�,�| = I . (10.11)

In our case, the measure .dμ�(τ , τ∗) is given by

.dμ�(τα, τ ∗
α ) ≡ dimV �

Vol[U(r)/U(r − k)] det(Ik + τ †τ )−r
∏
α

dταdτ ∗
α , (10.12)

where .τ is a .(r − k) × k matrix with complex entries given by

.τ ≡ z√
I k − τ †τ

, z ≡ η
sin

√
η†η√

η†η
, (η)ij ≡ ηij . (10.13)

Hence, any states .|ψ〉 in the Hilbert space of the fully antisymmetric representation
of the .U(r) group of r fermions can be expanded in terms of the coherent states
.|�,�〉 as

.|ψ〉 =
∫

dμ�N−1(τα, τ ∗
α )〈�,μ|ψ〉|�,μ〉, (10.14)

where .|�,�〉 ≡ N−1/2(τα, τ ∗
α )|�, τ 〉 and .N(τα, τ ∗

α ) is a normalization factor
determined by

.N(τα, τ ∗
α ) = det(I k + τ †τ ). (10.15)

To display the symplectic structure of the coset space .U(r)/U(k) ⊗ U(r − k) of
the fermion .U(r) coherent states, one only needs to assign a metric .g ≡ (gαβ) as
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follows:

.ds2 ≡
∑
α,β

gαβdταdτ ∗
β =

∑
α,β

∂2F

∂τα∂τ ∗
β

dταdτ ∗
β , (10.16)

where .τα = τij and .F(τα, τ ∗
α ) ≡ ln det(I k + τ †τ ). Using the metric .g, one can

explicitly construct a symplectic structure with a non-degenerate closed 2-form

.ω ≡ i

2

∑
α,β

gα,βdτα ∧ dτ ∗
β , (10.17)

where the function .F(τα, τ ∗
α ) is called the Kähler potential of the coset manifold.

Finally, the BCH formula of the .U(r) group of r fermions can be obtained by
using the faithful matrix representation of its group elements. As an example, the
following BCH formula of U.(r) group is useful in the application of the fermion
U.(r) coherent states:

. exp
∑
i,j

(ηij c
†
i cj − η∗

ij cic
†
j ) (10.18)

= exp
∑
i,j

(τij c
†
i cj ) exp

∑
ij

(λij c
†
i cj ) exp

∑
i,j

(−τ ∗
ij c

†
i cj ),

where the relation between .τij , .λij , and .ηij can be found explicitly in the following
matrix representation:

. exp
∑
i,j

(τij c
†
i cj ) exp

∑
ij

(λij c
†
i cj ) exp

∑
i,j

(−τ ∗
ij c

†
i cj ) (10.19)

=
(

I r−k τ

0 I k

)(
expλ1 0

0 exp λ2

) (
I r−k 0
−τ † I k

)

=
(
expλ1 − τ exp λ2τ

† τ expλ2

− exp λ2τ
† exp λ2.

)

=
(√

I r−k − zz† z

−z†
√

I k − z†z

)

Hence, a direct comparison yields

.τ = z√
I k − z†z

, exp λ1 = I r−k√
I r−k − zz†

, exp λ2 =
√

I k − z†z. (10.20)
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To continue, we shall consider a fermion system consisted of r single fermions
with pairing correlations. Let .ci and .c

†
i with .1 ≤ i ≤ r be the annihilation

and creation operators of the fermions. In the Hartree-Fock-Bogoliubov mean-field
approach to many-fermion systems, the Hamiltonian can be expressed as a linear
combination of .r(2r−1) fermion pair operators .Ei

j ≡ c
†
i cj − 1

2δij with .1 ≤ i, j ≤ r ,

.Eij ≡ cicj , and .Eij ≡ c
†
i c

†
j with .1 ≤ i < j ≤ r , which obey the properties

.(Ei
j )

† = E
j
i , (Eij )

† = Eji, (Eij )† = Eji, Eij = −Eji, E
ij = −Eji. (10.21)

One may show that the .r(2r −1) fermion pair operators form the Lie algebra .so(2r)
of the special orthogonal group SO.(2r). The commutation relations for the fermion
pair operators in the .so(2r) Lie algebra are

.[Ei
j , E

k
l ] = δjkE

i
l − δilE

k
j , . (10.22a)

[Ei
j , E

kl] = δjkE
il − δjlE

ik, . (10.22b)

[Ei
j , Ekl] = δikElj − δilEkj , . (10.22c)

[Eij , E
kl] = δikE

l
j − δjkE

l
i + δjlE

k
i − δilE

k
j , . (10.22d)

[Eij , Ekl] = [Eij , Ekl] = 0. (10.22e)

From Eq. (10.22a), one notices that the .r2 operators .Ei
j form a .u(r) subalgebra of

.so(2r). Let us denote .Hi ≡ Ei
i as the elements of the Cartan subalgebra. Then

from Eqs. (10.22a)–(10.22c), one obtains the following commutation relations in
the Cartan basis:

.[Hi,E
j
k ] = (δij − δjk)E

j
k , . (10.23a)

[Hi,E
jk] = (δij + δik)E

jk, . (10.23b)

[Hi,Ejk] = −(δij + δik)Ejk, (10.23c)

Equations (10.23a)–(10.23c) show that the multi-fermion .so(2r) algebra has .2r(r −
1) roots given by .±ei ± ej with .1 ≤ i < j ≤ r . Similar to the multi-fermion .u(r)

case, the faithful matrix representation of the multi-fermion .so(2r) algebra is useful
in practical applications, which are given by

.Ei
j ≡ c

†
i cj − 1

2
δij ⇔ Ei,j − Er+j,r+i , . (10.24)

Eij ≡ c
†
i c

†
j ⇔ Ei,r+j − Ej,r+i , . (10.25)

Eij ≡ cicj ⇔ Er+i,j − Er+j,i , (10.26)
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where .Ei,j is a .2r × 2r matrix with 1 in the ith column and j th row and zeros
elsewhere. Clearly, the set of diagonal matrices .Ei,i − Er+i,r+i forms the Cartan
subalgebra of .so(2r).

The basic states in the Hilbert space for the multi-fermion .so(2r) algebra are
.|n1, n2, · · · , nr 〉 with .nk = 0 or 1. There are two different spinor representations
.( 12 ,

1
2 , · · · ,± 1

2 ), where the plus and minus signs correspond to the even and
odd total particle number cases. Hence, there are .2r−1 states in each spinor
representation of .( 12 ,

1
2 , · · · ,± 1

2 ). For the two distinct spinor representations of the
multi-fermion .Spin(2r) group, where .Spin(2r) is the covering group of .SO(2r), the
extremal states can be taken as

.|0〉 ≡ |0, 0, · · · , 0〉 for (
1

2
,
1

2
, · · · ,

1

2
), (10.27)

|1〉 ≡ |1, 0, · · · , 0〉 for (
1

2
,
1

2
, · · · ,−1

2
).

One then obtains the following relations .c
†
i cj |0〉 = 0 for .1 ≤ i, j ≤ r and

.c
†
1c1|1〉 = |1〉, c†i cj |1〉 = 0, (2 ≤ i, j ≤ r), (10.28)

c
†
1c

†
i |1〉 = cic1|1〉 = 0, (2 ≤ i ≤ r).

Clearly, the operators .Ei
j ≡ c

†
i cj − 1

2δij with .1 ≤ i, j ≤ r form a subalgebra

.u(r) of .so(2r). Besides, one may show that the operators .Ei
j ≡ c

†
i cj − 1

2δij

with .2 ≤ i, j ≤ r , .E1
1 ≡ c

†
1c1 − 1

2 , .E1i ≡ c
†
1c

†
i , and .Ej1 ≡ cj c1 with

.2 ≤ i ≤ r also form a subalgebra .u(r) of .so(2r). The corresponding Lie groups
U.(r) are the stability subgroup of .Spin(2r), which keep the extremal state .|0〉 of
the irreducible representation .( 12 ,

1
2 , · · · , 1

2 ) unchanged, or the extremal state .|1〉 of
the irreducible representation .( 12 ,

1
2 , · · · ,− 1

2 ) unchanged. One may then construct
the coherent states for the multi-fermion .so(2r) according to the general algorithm.
For simplicity, in the following, we shall discuss only the coherent states for the
irreducible representation .( 12 ,

1
2 , · · · , 1

2 ) which corresponds to the case of even
total particle number. The same procedure can also be applied to the irreducible
representation .( 12 ,

1
2 , · · · ,− 1

2 ) which corresponds to the case of odd total particle
number.

Since the isotropy subgroup of .Spin(2r) in the irreducible representation
.( 12 ,

1
2 , · · · , 1

2 ) is U.(r) generated by the operators .Ei
j ≡ c

†
i cj − 1

2δij , the coherent
state spaces are then isomorphic to the coset space .Spin(2r)/U(r), and the coherent
states are generated by

.|�,�〉 ≡ �|�,�〉 ≡ exp
∑

1≤i<j≤r

(ηij c
†
i c

†
j − η∗

ij cj ci)|0〉, (10.29)
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where .� is the general form of the coset representative of .Spin(2r)/U(r). Hence, the
coherent states so defined naturally have the topological structure of .Spin(2r)/U(r),
from which one may derive more geometric properties.

One of the key features of the topological space .Spin(2r)/U(r) of the
multi-fermion .Spin(2r) coherent states is a symmetric space, i.e., a .r × r-
dimensional complex manifold. As the coset space .Spin(2r)/U(r) is isomorphic
to .SO(2r)/U(r), the symplectic structure of .Spin(2r)/U(r) can be found from
that of .SO(2r)/U(r). In the faithful matrix representation of .SO(2r), the coset
representative of .SO(2r)/U(r) is

.� = exp

(
0 η

−η† 0

)
=

(√
I r − zz† z

−z†
√

I r − z†z

)
, (10.30)

where .η and .z are .r × r antisymmetric complex matrices given by

.η ≡ (ηij ), z ≡ η
sin

√
η†η√

η†η
. (10.31)

By introducing the projected coset representation via

.τ ≡ z√
I r − z†z

= η
tan

√
η†η√

η†η
, (10.32)

one can explicitly express a group transformation

.g =
(

A B

C D

)
∈ SO(2r), (10.33)

on the coset space .SO(2r)/U(r) as

.τ ′ = Aτ + B

Cτ + D
. (10.34)

The Riemann metric of the coset space can be obtained from the non-normalized
form .|τ 〉 of the coherent states

.|�,�〉 = 1√
N(τ, τ ∗)

|�, τ 〉 ≡ 1√
N(τ, τ ∗)

exp
∑

1≤i 	=j≤r

(ηij c
†
i c

†
j )|0〉 (10.35)

via the relation

.ds2 =
∑
α,β

gαβdταdτ ∗
β =

∑
α,β

∂2F

∂τα∂τ ∗
β

dταdτ ∗
β , (10.36)
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where .N(τ, τ ∗) = √
det(I r + τ †τ ) and .F ≡ lnN(τ, τ ∗) = 1

2 ln det(I r + τ †τ ).
Finally, the coset space .Spin(2r)/U(r) is also a Kähler manifold which possesses a
symplectic structure with a closed non-degenerate 2-form

.ω ≡ i

2

∑
α,β

gα,βdτα ∧ dτ ∗
β . (10.37)

Using the faithful matrix representation of .SO(2r), one may obtain the following
BCH formula of .SO(2r):

.� ≡ exp
∑
i<j

(ηij c
†
i c

†
j − η∗

ij cj ci) (10.38)

= exp
∑
i<j

(τij c
†
i c

†
j ) exp

∑
i<j

[λij (c
†
i cj − 1

2
δij )] exp

∑
i<j

(−τ ∗
ij cicj ),

where the right-hand side of Eq. (10.39) can be written in the faithful matrix
representation of .SO(2r) as

.

(
I r τ

0 I r

) (
expλ 0
0 exp−λ�

) (
I r 0

−τ † I r

)
(10.39)

=
(

eλ − τe−λ�
τ † τe−λ�

−e−λ�
τ † e−λ�

)
,

where .τ ≡ (τij ) and .λ ≡ (λij ). Comparing Eqs. (10.30) and (10.39), one
immediately obtains

.τ = z√
I r − z†z

= η
tan

√
η†η√

η†η
, (10.40)

eλ = I r√
I r − zz†

= I r

cos
√

ηη†
.

However, Eq. (10.40) is only the BCH formula for .SO(2r). In order to obtain the
BCH formula for .Spin(2r), one notes that the subgroup .U(r) of .Spin(2r) is double-
valued in the .SO(2r) representation. Hence, .λ must be replaced by .λ/2 in the case
of .Spin(2r), which yields the following relationship between .z and .λ and .η for the
.Spin(2r):

.τ = z√
I r − z†z

, exp
λ

2
= I r√

I r − z†z
. (10.41)



200 10 QuantumMany-Body Systems

Finally, from the general theorem of completeness, the coherent states .|�,�〉 ≡
�|0〉 obey the completeness relation

.

∫
dμ�(τ , τ ∗)|�,�〉〈�,�| = I r , (10.42)

where the measure of the coset space can be expressed in terms of the projected
coset representation as

.dμ�(τα, τ ∗
α ) = dimV �

Vol(Spin(2r)/U(r))
[det((I r + τ †τ ))]−2r

∏
α

dταdτ ∗
α . (10.43)

Hence, any state .|ψ〉 in the irreducible representation .( 12 ,
1
2 , · · · , 1

2 ) can be
expanded in terms of the coherent states as

.|ψ〉 =
∫

dμ�(τ , τ ∗)N−1(τα, τ ∗
α )f (τ )|τ 〉, f (τ ) ≡ 〈τ |ψ〉. (10.44)

Finally, when one adds the single-particle creation and annihilation operators
.c
†
i and .cj into the set of generators of .SO(2r), i.e., .{Ei

j ≡ c
†
i cj − 1

2δij , Eij ≡
cicj , E

ij ≡ c
†
i c

†
j }, the enlarged set of operator still forms a Lie algebra .so(2r + 1),

the maximum dynamical Lie algebra of a system with r fermions. The additional
commutation relations besides those for .so(2r) are

.[c†i , cj ] = 2Ei
j , [ci, cj ] = 2Eij , [c†i , c†j ] = 2Eij , (10.45)

[ci, E
j
k ] = δij fk, [c†i , Ej

k ] = −δikc
†
j , [ci, Ejk] = [c†i , Ejk] = 0,

[ci, E
jk] = δij c

†
k − δikc

†
j , [c†i , Ejk] = δij ck − δikcj .

Evidently, the sets of Fermion operators .{Ei
j } and .{Ei

j , Eij , E
ij } form the .u(r)

and .so(2r) subalgebras of .so(2r + 1), respectively. Similar to the .so(2r) case,
the r operators .Hi ≡ Ei

i with .1 ≤ i ≤ r form the maximal commutating
Cartan subalgebra of .so(2r + 1). Then from Eq. (10.45), one obtains the following
commutating relations in the Cartan basis:

.[Hi, cj ] = −δij cj , [Hi, c
†
j ] = δij c

†
i , [Hi,E

j
k ] = (δij − δjk)E

j
k , (10.46)

[Hi,E
jk] = (δij + δik)E

jk, [Hi,Ejk] = −(δij + δik)Ejk.

Equation (10.46) shows that the multi-fermion .so(2r + 1) algebra has .2r2 roots
given by .±ei and .±ei ± ej with .1 ≤ i < j ≤ r . Similar to the multi-fermion .u(r)

and .so(2r) cases, there exists a faithful matrix representation of the multi-fermion
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.so(2r + 1) algebra, which is given by

.c
†
i ⇔ Ei,0 − E0,r+i , . (10.47a)

ci ⇔ E0,i − Er+i,0, . (10.47b)

Ei
j ≡ c

†
i cj − 1

2
δij ⇔ Ei,j − Er+j,r+i , . (10.47c)

Eij ≡ c
†
i c

†
j ⇔ Ei,r+j − Ej,r+i , . (10.47d)

Eij ≡ cicj ⇔ Er+i,j − Er+j,i , (10.47e)

where .Ei,j is a .(2r + 1)× (2r + 1) matrix with 1 in the ith row and j th column and
zeros elsewhere. Similar to the multi-fermion .u(r) and .so(2r) cases, the diagonal
matrices .Hi ≡ Ei,i − Er+i,r+i form the Cartan subalgebra of .so(2r + 1).

For the irreducible spinor representation .� ≡ ( 12 ,
1
2 , · · · , 1

2 ) of the multi-fermion
.so(2r + 1) algebra, the extremal state can be taken as

.|�,�〉 ≡ |0〉 = |0, 0, · · · , 0〉. (10.48)

Hence, the isotropy subgroup of .Spin(2r+1) in the irreducible spinor representation
.( 12 ,

1
2 , · · · , 1

2 ) which leaves the extremal state .|0〉 invariant is U.(r) generated by the

operators .Ei
j ≡ c

†
i cj − 1

2δij , and the coherent state space is then isomorphic to the
coset space .Spin(2r + 1)/U(r). Following the same procedure as in the .u(r) and
.so(2r) cases, the coherent states for the multi-fermion .so(2r + 1) algebra are given
by .|�,�〉 ≡ �|�,�〉, where

.� ≡ exp

⎧⎨
⎩

∑
1≤i<j≤r

(η0ic
†
i − η∗

0ici + ηij c
†
i c

†
j − η∗

ij cj ci)

⎫⎬
⎭ (10.49)

is the general form of the coset representative of the coset space .Spin(2r +1)/U(r).

10.2 Bogoliubov Transformations

In many-body quantum theory, the concept of quasi-particles, coined by the
physicist Lev D. Landau, is a way to describe complicated collective behaviors of
real particles in many-body systems in terms of imagined quasi-particles, which
behave more like noninteracting particles. The basic idea is to represent the ground
state of a many-body system as the vacuum state with respect to the quasi-particles.
In principle, the is no simple relationship between the Landau quasi-particles
and the bare particles of a general physical system. However, for the so-called
Bogoliubov quasi-particles, coined by the physicist Nikolay N. Bogoliubov, the
quasi-particles are indeed related to the bare particles by a simple linear unitary
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transformation. The simple mathematical relationship, which is essence to the
Hartree-Fock-Bogoliubov theory, comes at the expense of the fact that the Bogoli-
ubov quasi-particle vacuum states and the corresponding one-quasi-particle states
are only approximations of the exact eigenstates of the many-body Hamiltonian.
Remarkably, both the concept of Bogoliubov quasi-particles and the Hartree-Fock-
Bogoliubov theory can be best understood in the context of coherent states, which
we shall discuss below.

When the Hamiltonian of a many-body system is constrained by a dynamical
group, its associated Hilbert space must be reduced to an irreducible representation
of the group, and thus the general Bogoliubov quasi-particle transformation has to
be restricted to a unitary transformation within the group. More precisely, let G be
the dynamical symmetry group of the system, and let g be an element of G, i.e.,
a general unitary transformation of G. Then the Bogoliubov transformation of the
bare vacuum state .|0〉 to the quasi-particle vacuum state .|�〉 has the form

.|�〉 = g|0〉 = �h|0〉 = �|0〉eiϕ(h), (10.50)

where .h ∈ H , .� ∈ G/H , and H is the maximum isotropy subgroup of G which
keeps the bare vacuum state .|0〉 invariant up to a phase factor .eiϕ(h). According to
the general algorithm for constructing coherent states, the Bogoliubov quasi-particle
vacuum state .|�〉 is precisely the coherent state on the coset space .G/H .

As an example, for a finite many-fermion system of r single-fermion states, in
the even fermion spinor irreducible representation of SO.(2r), the corresponding
Bogoliubov quasi-particle vacuum state is

.|�〉 ≡ �|0〉 = exp
∑

1≤i<j≤r

(ηij c
†
i c

†
j − η∗

ij cj ci)|0〉, (10.51)

where .|�〉 is a general representative of the coset space SO.(2r)/U(r), .ci and .c
†
i

are the single-particle fermionic annihilation and creation operators which obey the
anti-commutation relations .{ci, c

†
j } = δij , .{ci, cj } = {c†i , c†j } = 0, and .|0〉 is the no-

particle bare vacuum state annihilated by all the single-particle fermion annihilation
operators .ci . Equation (10.51) clearly shows that the Bogoliubov quasi-particle
vacuum state is nothing but a coherent superposition of fermionic pairing states.
In such a case, the Bogoliubov transformation from the single-particle operators .ci

and .c
†
i to the quasi-particle operators .bi and .b

†
i is given by [129]

.bj ≡ �cj�
−1 ≡

∑
1≤i≤r

(u∗
ij ci + v∗

ij c
†
i ), . (10.52a)

b
†
j ≡ �c

†
j�

−1 ≡
∑
1≤i≤r

(uij c
†
i + vij ci). (10.52b)
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As such, the Bogoliubov quasi-particle annihilation and creation operators .bi and
.b
†
i are forced to obey the same fermionic anti-commutation relations

.{bi, b
†
j } = {�ci�

−1,�c
†
j�

−1} = �{ci, c
†
j }�−1 = δij , . (10.53a)

{bi, bj } = {�ci�
−1,�cj�

−1} = �{ci, cj }�−1 = 0, . (10.53b)

{b†i , b†j } = {�c
†
i �

−1,�c
†
j�

−1} = �{c†i , c†j }�−1 = 0, (10.53c)

and thus the coefficients .uij and .vij appearing in the Bogoliubov transformation,
Eqs. (10.52a) and (10.52b), are not completely arbitrary, but are restricted to obey
the condition

.U†U + V †V = I r ,U
†V ∗ + V †U∗ = 0. (10.54)

where .U ≡ (uij ) and .V ≡ (vij ). Using the two matrices .U and .V , the Bogoli-
ubov transformation from the single-particle annihilation and creation operators
.(c, c†)� ≡ (c1, · · · , cr , c

†
1, · · · , c

†
r )

� to the quasi-particle annihilation and creation

operators .(b, b†)� ≡ (b1, · · · , br , b
†
1, · · · , b

†
r )

�, which acts in a 2r-dimensional
space, can be expressed as

.

(
b

b†

)
= T

†
(

c

c†

)
,T† ≡

(
U† V †

V � U�
)

, (10.55)

where the inverse Bogoliubov transformation is determined by

.

(
c

c†

)
= (T†)−1

(
b

b†

)
, (T†)−1 =

(
U V ∗
V U∗

)
. (10.56)

Hence, the explicit expression of the inverse Bogoliubov transformation from the
quasi-particle operators .bi and .b

†
i to the single-particle operators .ci and .c

†
i is

.ci =
∑

1≤j≤r

(uij bj + v∗
ij b

†
j ), c

†
i =

∑
1≤j≤r

(vij bj + u∗
ij b

†
j ). (10.57)

As a coherent state, the Bogoliubov quasi-particle vacuum state .|�〉 is automatically
annihilated by all the quasi-particle annihilation operators .bi

.bi |�〉 = �ci�
−1|�〉 = �ci�

−1�|0〉 = �ci |0〉 = 0. (10.58)

Using Eq. (10.52a), one may readily show that the Bogoliubov quasi-particle
vacuum state is equivalently annihilated by the following combinations of fermionic
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creation and annihilation operators

.(ck +
∑
1≤i≤r

(V ∗U∗−1)i,kc
†
i )|0〉 = 0. (10.59)

In order to find out the mathematical relationship between the parameters .uij and
.vij appearing in the Bogoliubov transformation from the single-particle operators .ci

and .c
†
i to the quasi-particle operators .bi and .b

†
i , and the parameters .ηij appearing

in the Bogoliubov quasi-particle vacuum state .|�〉, one may employ the following
identity:

. exp

⎧⎨
⎩

∑
i<j

τij c
†
i c

†
j

⎫⎬
⎭ ck exp

⎧⎨
⎩−

∑
i<j

τij c
†
i c

†
j

⎫⎬
⎭ (10.60)

= ck +
∑
i<j

τij [c†i c†j , ck]

= ck +
∑
i<j

τij (δkj c
†
i − δkic

†
j )

= ck +
∑
i<k

τikc
†
i −

∑
j>k

τkj c
†
j ,

where we have used the commutation relations .[ck, c
†
i c

†
j ] = δkic

†
j − δkj c

†
i and

.[c†k, c†i c†j ] = 0. If one regards .τij as the elements of an antisymmetric matrix

.τ ≡ (τij ), which obey the relations .τji = −τij , then one obtains

. exp

⎧⎨
⎩

∑
i<j

τij c
†
i c

†
j

⎫⎬
⎭ ck exp

⎧⎨
⎩−

∑
i<j

τij c
†
i c

†
j

⎫⎬
⎭ = ck +

∑
1≤i≤r

τikc
†
i . (10.61)

Moreover, one also needs the following identity:

. exp

⎧⎨
⎩

∑
i<j

λij (c
†
i cj − 1

2
δij )

⎫⎬
⎭ ck exp

⎧⎨
⎩−

∑
i<j

λij (c
†
i cj − 1

2
δij )

⎫⎬
⎭ (10.62)

= ck −
∑
j

λkj cj + 1

2!
∑
j,l

λkjλjlcl − 1

3!
∑
j,l,m

λkjλjlλlmcm + · · ·

= ck −
∑
j

λk,j cj + 1

2!
∑

l

(λ2)k,lcl − 1

3!
∑
m

(λ3)k,mcm + · · ·

=
∑

1≤j≤r

(e−λ)k,j cj ,
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where we have used the commutation relation .[ck, E
i
j ] = δkicj with .Ei

j ≡ c
†
i cj −

1
2δij . Using the BCH formula for the coset representative

.� ≡ exp
∑
i<j

(ηij c
†
i c

†
j − η∗

ij cicj ) (10.63)

= exp
∑
i<j

(τij c
†
i c

†
j ) exp

∑
i<j

[λij (c
†
i cj − 1

2
δij )] exp

∑
i<j

(−τ ∗
ij cicj ),

and the identities Eqs. (10.61) and (10.62), one will obtain

.�cj�
−1 = exp

⎧⎨
⎩

∑
i<j

τij c
†
i c

†
j

⎫⎬
⎭

∑
k

(e−λ)j,kck exp

⎧⎨
⎩−

∑
i<j

τij c
†
i c

†
j

⎫⎬
⎭ (10.64)

=
∑

1≤k≤r

(e−λ)j,k(ck +
∑
1≤i≤r

τikc
†
i )

=
∑

1≤k≤r

(e−λ�
)k,j ck +

∑
1≤i,k≤r

(τ )i,k(e
−λ�

)k,j c
†
i

=
∑
1≤i≤r

[(e−λ�
)i,j ci + (τe−λ�

)i,j c
†
i ],

where we have used the commutation relation .[ck, cicj ] = 0. A direct comparison
between Eqs. (10.52a) and (10.64) yields

.u∗
ij = (e−λ�

)i,j , v
∗
ij = (τe−λ�

)i,j , (10.65)

which is equivalent to the following expression:

.U∗ = e−λ� = cos
√

η†η,V ∗ = τe−λ� = η
sin

√
η†η√

η†η
. (10.66)

From Eq. (10.66), one can immediately derive the following identities:

.U† = e−λ = cos
√

ηη† = U , . (10.67a)

V † = − sin
√

ηη†√
ηη†

η = −η
sin

√
η†η√

η†η
= −V ∗, (10.67b)
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where we used the relations .η� = −η and .(η†)� = −η† for antisymmetric matrices
.η and .η†. Substituting Eq. (10.66) into Eq. (10.59), one immediately obtains

.(ck +
∑
1≤i≤r

τikc
†
i )|0〉 = 0,V ∗U∗−1 = τ = η

tan
√

η†η√
η†η

. (10.68)

Substitution of Eqs. (10.66) and (10.67) into Eq. (10.56) immediately yields

.

(
b

b†

)
= T

†
(

c

c†

)
,T† ≡

⎛
⎜⎝

cos
√

ηη† −η
sin

√
η†η√

η†η

sin
√

η†η√
η†η

η† cos
√

η†η

⎞
⎟⎠ . (10.69)

A direct computation yields the orthogonal conditions for the coefficient matrices
.T
† and .T

.T
†
T = exp

(
0 −η

η† 0

)
exp

(
0 η

−η† 0

)
= I 2r , . (10.70a)

TT
† = exp

(
0 η

−η† 0

)
exp

(
0 −η

η† 0

)
= I 2r , (10.70b)

from which one recovers the orthogonal conditions for the coefficient matrices .U

and .V

.U†U + V †V = I r ,U
†V ∗ + V †U∗ = 0. (10.71)

From Eq. (10.71), one also recovers that .τ is antisymmetric, which satisfies

.τ ∗ = V ∗U∗−1 = −U†−1V † = −(V U−1)† = −τ †, (10.72)

or equivalently .τ� = −τ . As .T
†
T = TT

† = I 2r , one may simply invert the matrix
.T
† and obtain single-particle operators .ci and .c

†
i from the quasi-particle operators

.bi and .b
†
i

.

(
c

c†

)
= T

(
b

b†

)
,T ≡

⎛
⎜⎝

cos
√

ηη† η
sin

√
η†η√

η†η

− sin
√

η†η√
η†η

η† cos
√

η†η

⎞
⎟⎠ . (10.73)

Remarkably, the coefficient matrix .T, which brings the quasi-particle operators
.bi and .b

†
i to the single-particle operators .ci and .c

†
i , is nothing but the faithful

representation of the coset representative .�. This fact reveals the real power of
the coherent state method in many-body theory. The usage of coherent states
greatly simplifies the computation of the Bogoliubov transformation where a large
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dynamical group is involved to a point that it cannot be further simplified, as the
faithful representation of a group has the smallest dimension among all the other
matrix representations.

Up to now, we have only investigated the formal mathematical structure of the
Hartree-Fock-Bogoliubov theory and the corresponding Bogoliubov quasi-particle
vacuum state .|�〉 using the coherent state method. In the following, we will derive
an equation for the coefficients .uij and .vij which defines the Bogoliubov quasi-
particles and the Bogoliubov quasi-particle vacuum state .|�〉.

We assume that the Bogoliubov quasi-particle vacuum state .|�〉 is a good
variational ansatz for the exact ground state of the many-body Hamiltonian

.Ĥ =
∑
ij

εij c
†
i cj + 1

4

∑
ijkl

gijklc
†
i c

†
j clck, (10.74)

and will derive the Hartree-Fock-Bogoliubov equations using the variation prin-
ciple. However, one has to notice that the variation has to be restricted by the
subsidiary condition that the expectation value of the particle number has the value
N , i.e., .〈�|N̂ |�〉 = N , which can be achieved by adding the term .−λN̂ to the
variational Hamiltonian .Ĥ ′ = Ĥ − λN̂ . Here, the Lagrange multiplier .λ is also
called the chemical potential or the Fermi energy, as it represents the increase of
the energy .E = 〈�|Ĥ |�〉 for a change in the particle number, i.e., .λ = dE/dN .

From the variational principle, .δ〈�|Ĥ ′|�〉 = 0, one can investigate small
variations .|δ�〉 in the vicinity of the variational ansatz .|�〉. As the first step,
one needs Thouless’s theorem, which states that any quasi-particle state .|�̃〉 ≡
|�〉 + |δ�〉 of the Hartree-Fock-Bogoliubov type, which is not orthogonal to .|�〉,
can be expressed in the form

.|�̃〉 = 〈�|�̃〉 exp
⎛
⎝ ∑

1≤i<j≤r

Zij b
†
i b

†
j

⎞
⎠ |�〉. (10.75)

In order to prove Thouless’s theorem, one starts with two sets of Bogoliubov
quasi-particle annihilation and creation operators, .{bj , b

†
j } and .{b̃j , b̃

†
j }, which are

associated to the two quasi-particle states .|�〉 and .|�̃〉, where

.b
†
j ≡

∑
1≤i≤r

(uij c
†
i + vij ci), b̃

†
j ≡

∑
1≤i≤r

(ũij c
†
i + ṽij ci). (10.76)

If one expresses .b̃j and .b̃
†
j in terms of .bj and .b

†
j as

.b̃
†
j =

∑
1≤i≤r

(u′
ij b

†
i + v′

ij bi), b̃j =
∑
1≤i≤r

(u′∗
ij bi + v′∗

ij b
†
i ), (10.77)
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one immediately obtains

.b̃
†
j =

∑
1≤i,k≤r

[u′
ij (ukic

†
k + vkick) + v′

ij (u
∗
kick + v∗

kic
†
k)] (10.78)

=
∑

1≤i,k≤r

[(ukiu
′
ij + v∗

kiv
′
ij )c

†
k + (vkiu

′
ij + u∗

kiv
′
ij )ck].

A direct comparison between Eqs. (10.78) and (10.76) yields

.ũij =
∑

i

(ukiu
′
ij + v∗

kiv
′
ij ), ṽij =

∑
i

(vkiu
′
ij + u∗

kiv
′
ij ), (10.79)

or equivalently

.Ũ = UU ′ + V ∗V ′, Ṽ = V U ′ + U∗V ′, (10.80)

where .Ũ ≡ (ũij ), .U ′ ≡ (u′
ij ), .Ṽ ≡ (ṽij ), and .V ′ ≡ (v′

ij ). Using Eqs. (10.71) and
(10.80), one immediately obtains

.U ′ = U†Ũ + V †Ṽ ,V ′ = V �Ũ + U�Ṽ . (10.81)

As both sets of quasi-particle operators, .{bj , b
†
j } and .{b̃j , b̃

†
j }, obey the anti-

commutation relations, the transformation matrices .U ′ and .V ′ have to obey

.U ′†U ′ + V ′†V ′ = I r ,U
′†V ′∗ + V ′†U ′∗ = 0. (10.82)

From the fact that the two quasi-particle states .|�̃〉 ≡ |�〉 + |δ�〉 and .|�〉 are non-
orthogonal, one may invert the matrix .U ′ and obtain

.γ
†
k ≡

∑
1≤j≤r

U ′−1
j,k b̃

†
j = b

†
k +

∑
1≤i≤r

(V ′U ′−1)i,kbi . (10.83)

Let .Z∗
ij ≡ (V ′U ′−1)ij ; Eq. (10.83) immediately yields

.γ
†
k = b

†
k +

∑
1≤i≤r

Z∗
ikbi, γk = bk +

∑
1≤i≤r

Zikb
†
i . (10.84)

From Eq. (10.82), one can readily show that the coefficient matrix .Z ≡ (Zij ) is
antisymmetric, i.e., .Z� = −Z. As the transformation equation (10.83) involves
only the quasi-particle creation operators .b̃

†
j , the state .|�̃〉 is still the quasi-particle

vacuum state with respect to the quasi-particle operators .γk , i.e., .γk|�̃〉 = 0 for all
k. This condition will determine the state .|�̃〉 up to a normalization constant. Hence,
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one only needs to prove that

.γk exp(
∑
i<j

Zij b
†
i b

†
j )|�〉 = 0, (10.85)

which can be validated by a direct computation:

. exp(−
∑
i<j

Zij b
†
i b

†
j )γk exp(

∑
i<j

Zij b
†
i b

†
j )|�〉 (10.86)

= exp(−
∑
i<j

Zij b
†
i b

†
j )(bk +

∑
i

Zikb
†
i ) exp(

∑
i<j

Zij b
†
i b

†
j )|�〉

= (bk −
∑

i

Zikb
†
i +

∑
i

Zikb
†
i )|�〉 = bk|�〉 = 0.

As the second step, one needs to express the many-body Hamiltonian equa-
tion (10.74) in terms of the quasi-particle operators .bi and .b

†
i . Using the inverse

Bogoliubov transformation equation (10.57), the one-body terms become

.

∑
ij

εij c
†
i cj =

∑
ij lm

εij (vilbl + u∗
ilb

†
l )(ujmbm + v∗

jmb†m) (10.87)

= Tr(ερ) +
∑
lm

[ξ l,mb
†
l bm + 1

2
(ζ l,mb

†
l b

†
m + ζ

†
l,mbmbl)],

where .ε ≡ (εij ) is a Hermitian matrix, i.e., .ε† = ε, .ρ ≡ V ∗V �, .ξ ≡ U†εU −
V †ε�V , and .ζ ≡ U†εV ∗ − V †ε�U∗. By definition, .ρ is also a Hermitian matrix,
i.e., .ρ† = ρ.

In the many-body Hamiltonian equation (10.74), for the two-body terms with
three quasi-particle creation operators .b

†
i and one quasi-particle annihilation opera-

tor .bi , one obtains

.
1

4

∑
IJ

gijkl(vimu∗
jnv

∗
lpv∗

kqbmb†nb
†
pb†q + u∗

imvjnv
∗
lpv∗

kqb†mbnb
†
pb†q) (10.88)

= 1

4

∑
IJ

(gijkl + gjilk)vimu∗
jnv

∗
lpv∗

kqbmb†nb
†
pb†q − 1

2

∑
klpq

�∗
k,lv

∗
lpv∗

kqb†pb†q

= 1

2

∑
IJ

gijklvimu∗
jnv

∗
lpv∗

kqbmb†nb
†
pb†q + 1

2

∑
pq

(V †�V ∗)q,pb†qb†p,

where I and J are the index sets .{1 ≤ i, j, k, l ≤ r} and .{1 ≤ m, n, p, q ≤ r},
respectively, and we have used the condition .gijkl = gjilk in the last step. Here, the
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coefficient matrix .� is defined by

.�i,j ≡ 1

2

∑
kl

gijklκk,l , (10.89)

and .κ ≡ V ∗U� is an antisymmetric matrix, i.e., .κ� = −κ , which can be validated
as follows:

.(V ∗U�)� = UV † = −U†V ∗ = V †U∗ = −V ∗U�, (10.90)

where we have used the orthogonal condition .U†V ∗ +V †U∗ = 0 and the condition
that the coefficient matrices .U and .V are Hermitian and antisymmetric, respectively,
i.e., .U† = U and .V � = −V . Equation (10.88) can also be expressed as

.
1

4

∑
IJ

gijkl(vimu∗
jnv

∗
lpv∗

kqbmb†nb
†
pb†q + u∗

imvjnv
∗
lpv∗

kqb†mbnb
†
pb†q) (10.91)

= 1

4

∑
IJ

(gijkl − gjikl)u
∗
imvjnv

∗
lpv∗

kqb†mbnb
†
pb†q + 1

2

∑
klpq

�∗
k,lv

∗
lpv∗

kqb†pb†q

= 1

2

∑
IJ

gijklu
∗
imvjnv

∗
lpv∗

kqb†mbnb
†
pb†q − 1

2

∑
pq

(V †�∗V ∗)q,pb†qb†p,

where we have used the antisymmetric condition .gjikl = −gijkl in the last step.
Using the commutation relation .[b†i bj , b

†
kb

†
l ] = δjkb

†
i b

†
l − δjlb

†
i b

†
k , one can express

the two-body terms in Eq. (10.91) in the normal ordered form as

.

∑
IJ

gijklu
∗
imvjnv

∗
lpv∗

kqb†mbnb
†
pb†q (10.92)

=
∑
IJ

gijklu
∗
imvjnv

∗
lpv∗

kqb†pb†qb†mbn + 2
∑
ikmq

i,ku
∗
imv∗

kqb†mb†q

=
∑
IJ

gijklu
∗
ipvjqv∗

lmv∗
knb

†
mb†nb

†
pbq +

∑
mq

(U†V ∗ − V †�U∗)m,qb†mb†q,

where we have used the antisymmetric condition .gjilk = −gijkl in the last second
step. Here, the coefficient matrix . is defined by

.i,k ≡
∑
j l

gijkl(V V †)j,l . (10.93)
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For the remaining two-body terms with three quasi-particle creation operators .b
†
i

and one quasi-particle annihilation operator .bi , one obtains

.
1

4

∑
IJ

gijkl(u
∗
imu∗

jnv
∗
lpukqb†mb†nb

†
pbq + u∗

imu∗
jnulpv∗

kqb†mb†nbpb†q) (10.94)

= 1

4

∑
IJ

(gijkl − gijlk)u
∗
imu∗

jnv
∗
lpukqb†mb†nb

†
pbq + 1

2

∑
ijmn

�i,j u
∗
imu∗

jnb
†
mb†n

= 1

2

∑
IJ

gijklu
∗
imu∗

jnv
∗
lpukqb†mb†nb

†
pbq + 1

2

∑
mn

(U†�U∗)m,nb
†
mb†n,

where we have used the condition .gjilk = −gijkl in the last step. Combining
equations (10.91), (10.92), and (10.94), the four two-body terms with three quasi-
particle creation operators .b

†
i and one quasi-particle annihilation operator .bi can be

expressed in the normal ordered form as

.
1

4

∑
IJ

gijkl(u
∗
imu∗

jnv
∗
lpukqb†mb†nb

†
pbq + u∗

imu∗
jnulpv∗

kqb†mb†nbpb†q (10.95)

+ vimu∗
jnv

∗
lpv∗

kqbmb†nb
†
pb†q + u∗

imvjnv
∗
lpv∗

kqb†mbnb
†
pb†q)

= 1

2

∑
IJ

gijkl(u
∗
imu∗

jnv
∗
lpukq + u∗

imvjnv
∗
lpv∗

kq)b†mb†nb
†
pbq

+ 1

2

∑
mn

(U†V ∗ − V †�U∗ + U†�U∗ − V †�∗V ∗)m,nb
†
mb†n.

Similarly, for the first pair of two-body terms with two quasi-particle creation
operators .bi and two quasi-particle annihilation operators .b

†
i , one obtains

.

∑
IJ

gijkl(u
∗
imu∗

jnulpukqb†mb†nbpbq + vimvjnv
∗
lpv∗

kqbmbnb
†
pb†q) (10.96)

=
∑
IJ

gijkl(u
∗
imu∗

jnulpukqb†mb†nbpbq + vimvjnv
∗
lpv∗

kqb†pb†qbmbn)

+
∑

ijklnp

(gij lk + gjikl − gjilk − gijkl)(V V †)ikvjnv
∗
lpb†pbn + 2(ρ, ρ)

=
∑
IJ

gijkl(u
∗
imu∗

jnulpukq + v∗
lmv∗

knvipvjq)b†mb†nbpbq

− 4
∑
np

(V †�V )p,nb
†
pbn + 2(ρ, ρ),
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where .(ρ, ρ) ≡ ∑
I gijklρikρjl . Here we have used the .so(2r) commutation relation

in the last second step and the antisymmetric conditions .gjikl = gijlk = −gjilk in
the last step. For the second pair of the two-body terms with two quasi-particle
creation operators .bi and two quasi-particle annihilation operators .b

†
i , one obtains

.

∑
IJ

gijkl(u
∗
imvjnv

∗
lpukqb†mbnb

†
pbq + u∗

imvjnulpv∗
kqb†mbnbpb†q) (10.97)

=
∑
IJ

gijkl(u
∗
imvjnulpv∗

kqb†mb†qbnbp − u∗
imvjnv

∗
lpukqb†mb†pbnbq)

+
∑

ijklmn

[(gijkl − gijlk)(V V †)j lu
∗
imukn + gijkl(V

∗U�)klu
∗
imvjn]b†mbn

=
∑
IJ

gijkl(u
∗
imv∗

knvjpulq − u∗
imv∗

lnvjpukq)b†mb†nbpbq

+ 2
∑
mn

(U†U + U†�V )m,nb
†
mbn,

where we have used the fermionic .so(2r) commutation relation .[Enp, b
†
q ] =

δpqbn − δnqbp with .Enp ≡ bnbp in the last second step and the antisymmetric
condition .gijlk = −gijkl in both the second last step and the last step. For the last
pair of the two-body terms with two quasi-particle creation operators .bi and two
quasi-particle annihilation operators .b

†
i , one obtains

.

∑
IJ

gijkl(vimu∗
jnv

∗
lpukqbmb†nb

†
pbq + vimu∗

jnulpv∗
kqbmb†nbpb†q) (10.98)

=
∑
IJ

gijkl(u
∗
jmv∗

lnvipukq − u∗
jmv∗

knvipulq)b†mb†nbpbq

+ 2
∑
mn

(U†U + U†�V − 2V †�∗U)m,nb
†
mbn +

∑
I

gijklκ
∗
ij κkl,

Combining equations (10.96), (10.97), and (10.98), the two-body terms with two
quasi-particle creation operators and two quasi-particle annihilation operators can
be expressed in the normal ordered form as

.

∑
IJ

gijkl(u
∗
imu∗

jnulpukq + u∗
imv∗

knvjpulq − u∗
imv∗

lnvjpukq (10.99)

+ u∗
jmv∗

lnvipukq − u∗
jmv∗

knvipulq + v∗
lmv∗

knvipvjq)b†mb†nbpbq

+ 4
∑
mn

(U†U − V †�V + U†�V − V †�∗U)m,nb
†
mbn + (κ, κ),
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where .(κ, κ) ≡ ∑
I κ∗

ij gijklκkl . Notice that .g∗
ijkl = gklij = glkji as a result of the

Hermiticity of the Hamiltonian equation (10.74) and the anti-commutation relations
between the fermionic operator .ci and .c

†
j . Combining equations (10.87), (10.95),

and (10.99), the many-body Hamiltonian equation (10.74) can be expressed in the
normal ordered form in terms of the quasi-particle operators

.Ĥ = Tr(ερ) + 1

2
(ρ, ρ) + 1

4
(κ, κ) (10.100)

+
∑
mn

[ξ ′
m,nb

†
mbn + 1

2
(ζ ′

m,nb
†
mb†n + h.c.)]

+
∑
mnpq

(H 22
mnpqb†mb†nbpbq + H 31

mnpqb†mb†nb
†
pbq + H 40

mnpqb†mb†nb
†
pb†q + h.c.),

where .ξ ′ ≡ U†U −V †�V +U†�V −V †�∗U +ξ , .ζ ′ ≡ U†V ∗ −V †�U∗ +
U†�U∗ − V †�V ∗ + ζ , and

.H 22
mnpq ≡ 1

4

∑
I

gijkl(u
∗
imu∗

jnulpukq + u∗
imv∗

knvjpulq − u∗
imv∗

lnvjpukq (10.101)

+ u∗
jmv∗

lnvipukq − u∗
jmv∗

knvipulq + v∗
lmv∗

knvipvjq),

H 31
mnpq ≡ 1

2

∑
I

gijkl(u
∗
imu∗

jnv
∗
lpukq + u∗

imvjnv
∗
lpv∗

kq),

H 40
mnpq ≡ 1

4

∑
I

gijklu
∗
imu∗

jnv
∗
lpv∗

kq .

As the last step, one can now apply the variational principle to the expectation
of the many-body Hamiltonian with respect to the trial quasi-particle state .|�̃〉. For
infinitesimal variations, one can expand the exponential functions in Eq. (10.75) up
to the second order in .Zij and obtain

.
〈�̃|Ĥ |�̃〉
〈�̃|�̃〉 = 〈�| exp

⎛
⎝∑

i<j

Z∗
ij bj bi

⎞
⎠ Ĥ exp

⎛
⎝∑

i<j

Zij b
†
i b

†
j

⎞
⎠ |�〉 (10.102)

= 〈�|Ĥ +
∑
i<j

(Z∗
ij bj biĤ + Zij Ĥb

†
i b

†
j ) + 1

2

∑
i<j,l<m

Z∗
ijZ

∗
lmbj bibmblĤ

+
∑

i<j,l<m

(Z∗
ijZlmbjbiĤ b

†
l b

†
m + 1

2
ZijZlmĤb

†
i b

†
j b

†
l b

†
m)|�〉.

Here, in accordance to the Hartree-Fock-Bogoliubov theory, .Ĥ is chosen to be the
truncated many-body Hamiltonian of Eq. (10.100), of which all the higher than
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second-order terms expressed in the normal ordered form in terms of the quasi-
particle operators .bi and .b

†
i are neglected:

.Ĥ ≡ H 0 +
∑
αβ

(
H 11

αβb†αbβ + 1

2
H 20

αβb†αb
†
β + 1

2
H 02

αβbβbα

)
, (10.103)

where .H 02
αβ = H 20∗

βα and the coefficient matrices .H 11 ≡ (H 11
αβ) and .H 20 ≡ (H 20

αβ)

are determined by

.

(
H 11 H 20

−H 20∗ −H 11∗
)

≡ T
†
(

h �

−�∗ −h∗
)
T, . (10.104a)

T
† ≡

(
U† V †

V � U�
)

= exp

(
0 −η

η† 0

)
, . (10.104b)

T ≡
(

U V ∗
V U∗

)
= exp

(
0 η

−η† 0

)
. (10.104c)

As .|�〉 is the quasi-particle vacuum state, which is annihilated by all the quasi-
particle annihilation operators .bi , i.e., .bi |�〉 = 0, the nonzero contribution from the
term .〈�|bjbibmblĤ |�〉 should come from

.

∑
αβ

H 20
αβ〈�|bjbibmblb

†
αb

†
β |�〉 =

∑
αβ

H 20
αβ〈�|bjbib

†
αb

†
βbmbl |�〉 (10.105)

+
∑
αβ

H 20
αβ〈�|bjbi(δmαE

β
l − δlαEβ

m + δlβEα
m − δmβEα

l )|�〉

= −
∑
αβ

H 20
αβ(δmαδβl − δlαδβm)〈�|bjbi |�〉 = 0,

where we have used the fermionic .so(2r) commutation relation .[Eβα,Eij ] =
δβiE

j
α − δαiE

j
β + δαjE

i
β − δβjE

i
α with .Eβα ≡ bβbα , .Eij ≡ b

†
i b

†
j , and .Ei

α ≡
b
†
i bα − 1

2δiα in the last second step. Similarly, the term .〈�|Ĥb
†
i b

†
j b

†
l b

†
m|�〉 that

appeared in the expectation of the truncated Hamiltonian with respect to the trial
quasi-particle state .|�̃〉 vanishes identically. Notice that without the truncation of
the full Hamiltonian, both the terms .〈�|bjbibmblĤ |�〉 and .〈�|Ĥb

†
i b

†
j b

†
l b

†
m|�〉

are nonvanishing and have to be taken into account in evaluating the expectation
.〈�̃|Ĥ |�̃〉. For the other terms appearing in the expectation of the truncated
Hamiltonian with respect to the trial quasi-particle state .|�̃〉, a direct computation
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yields

.〈�|Ĥb
†
i b

†
j |�〉 =

∑
αβ

H 02
αβ〈�|bβbαb

†
i b

†
j |�〉 (10.106)

=
∑
αβ

H 02
αβ〈�|b†i b†j bβbα + δβiE

j
α − δαiE

j
β + δαjE

i
β − δβjE

i
α|�〉

=
∑
αβ

H 02
αβ(δiαδjβ − δiβδjα),

where we have used the fermionic .so(2r) commutation relation .[Eβα,Eij ] =
δβiE

j
α − δαiE

j
β + δαjE

i
β − δβjE

i
α again in the last second step. Similarly, a direct

computation yields

.〈�|bjbiĤ |�〉 =
∑
αβ

H 20
αβ(δiαδjβ − δiβδjα), (10.107)

and

.〈�|bjbiĤb
†
l b

†
m|�〉 = 〈�|H 0bjbib

†
l b

†
m +

∑
αβ

H 11
αβbjbib

†
αbβb

†
l b

†
m|�〉 (10.108)

= 〈�|H 0bjbib
†
l b

†
m +

∑
αβ

H 11
αβ(δiαbj − δjαbi)(δlβb†m − δmβb

†
l )|�〉

= H 0(δilδjm − δjlδim) +
∑
αβ

H 11
αβ [(δiαδjm − δjαδim)δlβ − (l ↔ m)],

where we have used the relation .〈�|bjbib
†
αb

†
βb

†
l b

†
m|�〉 = 〈�|bjbibβbαb

†
l b

†
m|�〉 =

0 in the first step and have used two other fermionic .so(2r) commutation relations
.[Eji, b

†
α] = δiαbj − δjαbi and .[bβ,Elm] = δlβb

†
m − δmβb

†
l in the last second step.

Combining equations (10.106), (10.107), and (10.108), the expectation of the many-
body Hamiltonian .Ĥ ′ ≡ Ĥ − λN̂ with respect to the trial quasi-particle state .|�̃〉,
up to the second order in .Zij , has the form

.
〈�̃|Ĥ ′|�̃〉

〈�̃|�̃〉 = H 0 +
∑
αβ

(H 02
αβZαβ + H 20

αβZ∗
αβ) (10.109)

+
(

H 0

2
− λ

)∑
αβ

Z∗
αβZαβ −

∑
αβγ

Z∗
γαH 11

αβZβγ .
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Applying the variation principle, the variation of Eq. (10.109) with respect to the
independent variables .Z∗

αβ and .Zαβ yields

.
∂

∂Z∗
αβ

〈�̃|Ĥ ′|�̃〉
〈�̃|�̃〉

∣∣∣
Zαβ=0

= H 20
αβ = 0, . (10.110a)

∂

∂Zαβ

〈�̃|Ĥ ′|�̃〉
〈�̃|�̃〉

∣∣∣
Z∗

αβ=0
= H 02

αβ = 0, (10.110b)

which implies that all the linear terms in Eq. (10.109) vanish at the stationary point.
However, since the variational equations .H 20

αβ = H 02
αβ = 0 themselves do not

completely fix the Bogoliubov transformation coordinates .U and .V , one can require,
in addition to the variational equations .H 20

αβ = H 02
αβ = 0, that the .H 11 matrix

involved in the truncated many-body Hamiltonian equation (10.103) is diagonalized.
Hence, using Eqs. (10.104a) and (10.104c), one can readily obtain

.T

(
E′ 0
0 −E′

)
=

(
h �

−�∗ −h∗
)
T, (10.111)

where .E′ ≡ E − λI r and .Eα,β ≡ Eαδαβ . Equation (10.111) is equivalent to

.

(
UE′ −V ∗E′
V E′ −U∗E′

)
=

(
h �

−�∗ −h∗
)(

U V ∗
V U∗

)
, (10.112)

which will lead to the Hartree-Fock-Bogoliubov equation for the Bogoliubov
transformation coordinates .U and .V

.

(
h �

−�∗ −h∗
)(

U

V

)
=

(
U

V

)
E′. (10.113)

where .h ≡ ε +. As both .ε and . are Hermitian matrices, i.e., .ε† = ε and .† = ,
.h is also Hermitian. Here, the matrices . and .� are explicitly determined by

.i,k ≡
∑
j l

gijkl(V V †)j,l ,�i,j ≡ 1

2

∑
kl

gijkl(V
∗U�)k,l, (10.114)

where .� is an antisymmetric matrix, i.e., .�� = −�.
As an immediate application, one can write down the variational ansatz for the

ground state of a superconductor, in which only particular fermionic pairs, i.e.,
Cooper pairs .c

†
k↑c

†
−k↓, are considered

.|BCS〉 =
r∏

k=1

1√
1 + |τk|2

exp

{
r∑

k=1

τkc
†
k↑c

†
−k↓

}
|0〉. (10.115)
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If one introduces the coordinates .uk ≡ 1/
√
1 + |τk|2 and .vk ≡ τk/

√
1 + |τk|2, one

immediately obtains the original form of the variational ground state proposed by
Bardeen, Cooper, and Schrieffer [130]

.|BCS〉 =
∏
k>0

(uk + vkc
†
k↑c

†
−k↓)|0〉. (10.116)

At first sight, it seems that the variational ansatz equation (10.115) of the supercon-
ducting ground state is quite arbitrary. But one can readily show that the fermionic
pairing operators .{c†k↑c

†
−k↓, c−k↓ck↑, c

†
k↑ck↑ + c

†
−k↓c−k↓} span a .su(2) algebra,

where the pairing operators are mapped to the .su(2) operators via

.c
†
k↑c

†
−k↓ ⇔ J k+, c−k↓ck↑ ⇔ J k−, c

†
k↑ck↑ + c

†
−k↓c−k↓ ⇔ 2J k

z + 1, (10.117)

and .J k± and .J k
z obey the standard .su(2) commutation relations .[J k+, J k−] = 2J k

z and
.[J k

z , J k±] = ±J k±. Hence, the Bardeen-Cooper-Schrieffer (BCS) variational ground
state, Eq. (10.115), is simply a product of .su(2) coherent states defined on the coset
space .SU(2)⊗r/U(1)⊗r . In other words, the BCS ground state of a superconductor
is a special case of the Bogoliubov quasi-particle vacuum state defined on the coset
space .SO(2r)/U(r).

Exercises

10.1. For a system with a single fermion, use the relation f †f |n〉 = n|n〉 to verify
the results

.f |0〉 = 0, f |1〉 = |0〉, f †|0〉 = |1〉, f †|1〉 = 0.

10.2. Verify Eqs. (10.2) and (10.3).

10.3. Verify Eq. (10.5) by using the spin-1/2 representation for a single fermion.

10.4. Verity Eqs. (10.7) and (10.8).

10.5. Verify that the operators f
†
i fj with 1 ≤ i ≤ k and k + 1 ≤ j ≤ r span a

subalgebra u(k) ⊕ u(r − k) of u(r).

10.6. Verify by direct computation that the faithful matrix representation of Ei
j ,

Eij , and Eij forms the Lie algebra so(2r), where

.Ei
j ⇔ Ei,j − Er+j,r+i ,

Eij ⇔ Ei,r+j − Ej,r+i ,
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Eij ⇔ Er+i,j − Er+j,i .

10.7. Verify Eq. (10.87).

10.8. Verify by direct computation that

.〈�|bjbiĤ |�〉 =
∑
αβ

H 20
αβ(δiαδjβ − δiβδjα),

10.9. Using Eqs. (10.106) and (10.107), verify the following relations:

.〈�|
∑
i<j

Zij Ĥb
†
i b

†
j |�〉 =

∑
αβ

H 02
αβZαβ,

〈�|
∑
i<j

Z∗
ij bj biĤ |�〉 =

∑
αβ

H 20
αβZ∗

αβ.

10.10. Using Eq. (10.108), verify the following relation:

.〈�|
∑

i<j,l<m

Z∗
ijZlmbjbiĤ b

†
l b

†
m|�〉 = H 0

2

∑
αβ

Z∗
αβZαβ −

∑
αβγ

Z∗
γαH 11

αβZβγ .

10.11. Verify by direct computation that

.λ〈�|
∑

i<j,l<m

Z∗
ijZlmbjbiN̂b

†
l b

†
m|�〉 = λ

∑
αβ

Z∗
αβZαβ,

where N̂ ≡ ∑
α b†αbα .

10.12. Using Eq. (10.115) to verify Eq. (10.116).



11Quantum Phase Transitions

11.1 Lieb-Berezin Inequality and LargeN Limit

Traditionally, since Glauber’s groundbreaking work on coherent states and optical
coherence theory, the concept of coherent states has been tightly connected with
quantum optics. But in the last chapter, we have shown that the Gilmore-Perelomov
group-theoretic coherent states could play a fundamental role in many-body physics,
which are essential to the variational calculations in the Hartree-Fock-Bogoliubov
theory in quantum chemistry and the theory of superconductivity. Furthermore, in
equilibrium statistical mechanics, it is well known that the partition function is the
fundamental physical quantity, in which once the partition function is known, one
can immediately obtain all the thermodynamic quantities. To this end, one may
wonder whether the Gilmore-Perelomov group-theoretic coherent states may also
be useful in evaluating quantum partition function.

Any direct evaluation of the partition function is known to be exceedingly
difficult, if not possible. However, fortunately and interestingly, instead of directly
evaluating the quantum partition functions, Elliott H. Lieb had pioneered in 1973
that one can rigorously obtain the upper and lower bounds of the quantum partition
functions for spin systems by using the spin coherent states [38]. Remarkably, a
year earlier, Felix A. Berezin was able to derive the same inequality by using the
covariant and contravariant symbols related to coherent states [39]. Barry Simon
was able to generalize Lieb’s ingenious result [131] in 1980 by using the Gilmore-
Perelomov group-theoretic coherent states to arbitrary quantum systems possessing
a compact dynamical symmetry group. In this regard, as it is in general exceedingly
difficult to solve the exact quantum partition function, the advantage of using
coherent states in statistical mechanics is manifested by such an approach. In fact,
in this context, one can obtain not only reasonable but also rigorous estimate of the
quantum partition function in the thermodynamic limit.

Besides the usage in the Lieb-Berezin inequalities, the coherent states are also
indispensable in the imaginary time path integrals formalism of quantum statistical
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mechanics, as the Gilmore-Perelomov group-theoretic coherent states provide an
over-complete family of states in a Hilbert space. Thus, the coherent states can be
used as a basis for a simpler representation of the quantum partition function of a
given many-body Hamiltonian as an integral over the coset manifold [132].

Moreover, the Gilmore-Perelomov group-theoretic coherent state is also valuable
in studying quantum phase transitions. Quantum phase transitions are associated
with abrupt change in the physical properties of a many-body quantum system
caused by the variation of the Hamiltonian parameters. It has been extensively
studied for various many-body systems in recent years [133, 134]. Remarkably, the
earliest studies on quantum phase transitions can be dated back to the late 1970s. In
1976, Hertz studied the magnetic quantum phase transitions in three dimensions, in
which the coherent states path integral is used to describe the low-energy collective
excitations of the fermionic quasi-particles [135]. In 1978, Gilmore and Feng
studied the shape phase transitions in atomic nuclei in the context of the Lipkin-
Meshkov-Glick model by using the spin coherent states [136]. Subsequently, in
1980, Feng, Gilmore, and Deans showed that the expectation of the many-body
Hamiltonian in the interacting boson model of the atomic nuclei with respect to the
Gilmore-Perelomov group-theoretic coherent states can demonstrate shape phase
transitions of first and second order [40]. In the following, we will discuss the
Lieb-Berezin inequalities, the imaginary time path integrals formalism of quantum
statistical mechanics, and the shape phase transitions in atomic nuclei in a unified
group-theoretical viewpoint.

As is well known, the statistical properties of a physical system associated with
a Hamiltonian H can either be determined from the partition function .Z(β), or the
from the free energy .F(β) [137]

.e−βF(β) ≡ Z(β) ≡ Tr e−βH , (11.1)

where .β ≡ 1/kBT , .kB is the Boltzmann constant, and the trace is taken over the
entire Hilbert space. For our purpose, we consider primary a Hamiltonian H which
is constructed from the generators of a Lie algebra .g such that .H = H(Ti) for
.Ti ∈ g, while in most applications of quantum mechanics, the Hamiltonians are
either linearly spanned by the generators .Ti of the Lie algebra .g

.H =
∑

i

ciTi, (11.2)

or simplified into the generic form of superposition of linear and quadratic functions
of the generators .Ti under suitable mean-field approximations

.H =
∑

i

ciTi +
∑

i,j

cij TiTj . (11.3)

With these approximations, the whole Hilbert space is decomposed into .g-invariant
subspaces .V �, where each subspace is represented by a weight .� with degeneracy
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.Y�. As the generators .Ti have nonzero matrix elements only within an irreducible
subspace, the trace in Eq. (11.1) becomes

.Z(β) = Tr e−βH =
∑

�

Y� Tr� e−βH , (11.4)

where .Tr� implies that the trace is restricted to an invariant subspace with a weight
.�. In the coherent state representation, as a result of the resolution of identity, the
trace within each invariant subspace .V � can be expressed as a coherent state integral
[38, 132]

. Tr� e−βH = Tr�

∫
dμ�|�,�〉〈�,�|e−βH (11.5)

=
∫

dμ�〈�,�|e−βH |�,�〉.

In general, except for a few special cases, the above coherent state integral cannot
be computed exactly. However, in 1973, in studying the classical limit of quan-
tum partition functions, Lieb ingeniously derived an ingenious thermodynamics
inequality using spin coherent states as a useful approximation of the partition
function for quantum spin systems [38]. Interestingly, 1 year before this study, in
1972, for the purpose of studying the quantization of classical systems, Felix A.
Berezin also had derived the same inequality through the usage of the covariant
and contravariant symbols related to an over-complete family of coherent states
[39]. These thermodynamic inequalities, now known as Lieb-Berezin inequalities,
give both the upper and lower bounds of the quantum free energy .F(β) in terms
of two classical free energies. In 1980, Barry Simon generalized the Lieb-Berezin
inequalities to a large class of dynamical systems using generalized coherent states
for arbitrary compact Lie groups [131].

The lower bound of the quantum partition function .Z(β) can be obtained from
the so-called Peierls-Bogoliubov inequality, .〈�|eX|�〉 ≥ exp〈�|X|�〉, for any
normalized states .|�〉 ∈ V � and self-adjoint operator X, which yields

. Tr� e−βH =
∫

dμ�〈�,�|e−βH |�,�〉 (11.6)

≥
∫

dμ� exp(−β〈�,�|H |�,�〉)

=
∫

dμ�e−βHQ(�,�),

where .HQ(�,�) is the Q-representation of the Hamiltonian H . In fact, the Peierls-
Bogoliubov inequality turns out to be a special case of the Jensen inequality
for convex functions and self-adjoint operators. To see this, we need the Jensen
inequality on a bounded interval .[m,M] on .R [138]: Let .f (x) be a convex function
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on an interval .[m,M]; then for every .x1, .x2, · · · , .xk ∈ [m,M] and every positive
real numbers .c1, .c2, · · · , .ck with .

∑k
j=1 ck = 1, one has

.f

⎛

⎝
k∑

j=1

cj xj

⎞

⎠ ≤
k∑

j=1

cjf (xj ). (11.7)

The Jensen inequality for two points reflects a geometric fact that the secant line
of a convex function lies above the graph of the function, where .f (c1x1 + c2x2)

represents the value of the convex function on the point .c1x1 + c2x2 which lies
between .x1 and .x2 and .c1f (x1) + c2f (x2) represents the associated value on the
secant line which passes though the two points .x1 and .x2.

To show that the Peierls-Bogoliubov inequality is a special case of the Jensen
inequality, one needs to know that if X is a self-adjoint operator, or a Hermitian
.k × k matrix for a finite-dimensional Hilbert space, then there exists a spectral
decomposition of X such that .X = U†DU , where .D = diag(x1, · · · , xk) is a
diagonal matrix whose entries are the eigenvalues .λi ∈ R of X, and U is a unitary
matrix which satisfies .U†U = UU† = Ik . As .U |�〉 is normalized to unity, one may
write .U |�〉 = (

√
c1e

iϕ1 , .· · · , .
√

cke
iϕk )T. Hence, applying the Jensen inequality to

the exponential function, one immediately obtains

. exp〈�|X|�〉 = exp

⎛

⎝
k∑

j=1

cj xj

⎞

⎠ ≤
k∑

j=1

cj e
xj = 〈�|eX|�〉. (11.8)

One may also estimate an upper bound of the quantum partition function
.Z(β) by using the Jensen inequality. Let .|ϕj 〉 be a complete orthonormal set
of eigenfunctions of .X ≡ −βH with .X|ϕj 〉 = xj |ϕj 〉 in the .g-invariant
subspace .V �, so that .U |ϕ1〉 = (1, 0, · · · , 0)T, .· · · , .U |ϕk〉 = (0, 0, · · · , 1)T,
and .|〈ϕj |�〉|2 = |〈ϕj |U†U |�〉|2 = cj . Let .|�〉 ≡ |�,�〉 be a generalized
coherent state and .P(�,�) ≡ |�,�〉〈�,�| be a projection operator; one then
has .〈ϕj |P(�,�)|ϕj 〉 = cj (�,�) and

.〈ϕj | exp(−βH)|ϕj 〉 = exp(−β〈ϕj |H |ϕj 〉) (11.9)

= exp(−β〈ϕj |
∫

dμ�HP (�,�)P(�,�)|ϕj 〉)

= exp(−β

∫
dμ�cj (�,�)HP (�,�))

≤
∫

dμ�cj (�,�)e−βHp(�,�),

where .HP (�,�) is the P -representation of the Hamiltonian H , and in the
last step, we used the integral form of the Jensen inequality by using the fact
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.
∫

dμ�cj (�,�) = 1. Finally, in Eq. (11.9), summation over j will yield

. Tr� e−βH ≤
∫

dμ�e−βHp(�,�). (11.10)

It is worth understanding here that since only the Jensen inequality is used, the
resulting inequalities can be extended to any convex functions, and are not limited
to the exponential function. This fact was first noted by Berezin [39] and was later
pointed out by Simon [131]. Combining Eqs. (11.6) and (11.9), one immediately
obtains the Lieb-Berezin thermodynamic inequalities

.

∫
dμ�e−βHQ(�,�) ≤ Tr� e−βH ≤

∫
dμ�e−βHp(�,�). (11.11)

Using the Lieb-Berezin inequalities, one is able to approximately describe quantum
dynamical systems via the coherent state representation. In particular, the upper
and lower bounds of the quantum free energy can be used to study the qualitative
statistical behavior of the systems as well as thermodynamic phase transitions. From
Eq. (11.11), the upper and lower bounds of the partition function as well as the free
energy are given by

.

∑

�

Y�

∫
dμ�e−βHQ(�,�) ≤ e−F(β) ≤

∑

�

Y�

∫
dμ�e−βHp(�,�). (11.12)

For a quantum system with a dynamical symmetry group G, the classical limit
.h̄ → 0 is in fact equivalent to the large N limit, where N is some measure of the
number of dynamical variables. One may prove this equivalence within the group-
theoretical framework of coherent states [131,139]. For example, the classical limit
of a quantum spin system with a dynamical symmetry group SU.(2) is known to be
.j → ∞, where j is the total angular momentum quantum number and .N = 2j

[38].
In particular, when the Hamiltonian of the spin system is linear in the spin

operators of each spin, i.e., one allows multiple site interactions of arbitrary
complexity such as .Ŝ1

x Ŝ2
y Ŝ3

y Ŝ4
z , but does not allow monomials such as .(Ŝ1

x)2 or

.Ŝ1
x Ŝ1

y . In such cases, the Q- and P -representations of the Hamiltonian can be easily
obtained. The Q- and P -representations for some operators commonly appearing in
quantum spin Hamiltonians are listed in the following table: [38] (Table 11.1).

One can readily see that the Q-representation of a Hamiltonian which is linear
in the spin operators of each spin is precisely the classical partition function
in which each spin operator is replaced by .j i times a classical unit vector,
i.e., .Ŝi → j i(sin θi cos ϕi, sin θi sin ϕi, cos θi). Similarly, the P -representation
of the same Hamiltonian is precisely the classical partition function in which
each spin operator is replaced by .(j i + 1) times the same unit vector, i.e.,
.Ŝi → (j + 1)i(sin θi cos ϕi, sin θi sin ϕi, cos θi). Hence, applying the Lieb-Berezin
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Table 11.1 Table of the Q- and P -representations of some operators that commonly appear in
quantum spin Hamiltonians, where the spin-j coherent state .|θ, ϕ〉 is used

Operator Q-representation P-representation

.Ŝz .j cos θ .(j + 1) cos θ

.Ŝx .j sin θ cos ϕ .(j + 1) sin θ cos ϕ

.Ŝy .j sin θ sin ϕ .(j + 1) sin θ sin ϕ

.Ŝ2
z .j (j − 1

2 )(cos θ)2 + j
2 .(j + 1)(j + 3

2 )(cos θ)2 − j+1
2

.Ŝ2
x .j (j − 1

2 )(sin θ cos ϕ)2 + j
2 .(j + 1)(j + 3

2 )(sin θ cos ϕ)2 − j+1
2

.Ŝ2
y .j (j − 1

2 )(sin θ sin ϕ)2 + j
2 .(j + 1)(j + 3

2 )(sin θ sin ϕ)2 − j+1
2

inequalities to a quantum spin system whose Hamiltonian is linear in the spin
operators will yield [38]

.Zcl(β, j1, · · · , jN) ≤ Z(β) ≤ Zcl(β, j1 + 1, · · · , jN + 1). (11.13)

The Lieb-Berezin inequalities show that as j increases, the quantum and classical
free energies form two decreasing, interlacing sequences.

Using the Lieb-Berezin inequalities, one may readily show that in the thermody-
namic limit .N → ∞, the Q- and P -representations of the Hamiltonian per particle
as well as the quantum free energy per particle are reduced to their classical forms.
Let .HN be a quantum Hamiltonian of N spins. Without loss of generality, the j

values for different spins are assumed to be the same, i.e., .j1 = j2 = · · · =
jN = j . One may replace each spin operator .Ŝi by .Ŝi/j and denotes the resulting
Hamiltonian and the partition function as .HN(j) and .ZN(β, j), respectively. Then
the free energy per spin is determined by .fN(β, j) = −(Nβ)−1 ln ZN(β, j). From
the Lieb-Berezin inequalities, one immediately obtains the upper and lower bounds
for the quantum free energy per spin [38]

.f cl
N (β) ≥ fN(β, j) ≥ f cl

N (β, δj ), (11.14)

where .f cl
N (β) is the classical free energy per spin in which each spin operator .Ŝi is

replaced by a classical unit vector .(sin θi cos ϕi, sin θi sin ϕi, cos θi) and .f cl
N (β, δj )

is the classical free energy per spin in which each vector is multiplied by .δj ≡
(j + 1)/j .

If we regard .δj as a variable, then the classical Hamiltonian .Hcl
N (δj ) is a

continuous function of .δj on .SN ≡ S2 × · · · × S2, i.e., the Cartesian product
of N copies of the unit sphere .S2. If one assumes that the thermodynamic limit
of .HN exists, then the sequence of continuous functions .hcl

N (δj ) ≡ N−1Hcl
N (δj )

is bounded and equicontinuous, i.e., for any given .ε > 0, it is possible to find
a .δ > 0, such that .‖hcl

N (δj + x) − hcl
N (δj )‖ < ε for .|x| < δ, independent of

N , where .‖hcl
N‖ is the supremum norm on .SN , i.e., .‖hcl

N‖ ≡ sup |hcl
N (θ,ϕ)| for

.(θ ,ϕ) ≡ (θ1, ϕ1, · · · , θN , ϕN) ∈ SN . According to the Arzelà-Ascoli theorem
[140–142], as .hcl

N (δj ) is bounded and equicontinuous sequence on a compact metric
space .SN , there exists a subsequence of it that converges uniformly. As a result of the
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uniform limit theorem [143], the uniform limit function .hcl(δj ) ≡ limN→∞ hcl
N (δj )

is continuous in .δj . Hence, the uniform limit function

.f cl(β, δj ) ≡ lim
N→∞ f cl

N (β, δj ) (11.15)

is also continuous in .δj . By the squeeze theorem, as both the left and right sequences
of Eq. (11.14) have the same limit when .N → ∞ (thermodynamic limit) and .j →
∞ (classical limit) and both sequences converge uniformly

. lim
j→∞ lim

N→∞ f cl
N (β, δj ) = lim

j→∞ f cl(β, δj ) = f cl(β) ≡ lim
N→∞ f cl

N (β), (11.16)

the sequence of quantum free energy per spin approaches to the same limit

. lim
j→∞ lim

N→∞ fN(β, j) = f cl(β) ≡ lim
N→∞ f cl

N (β). (11.17)

The above conclusion can be extended to arbitrary quantum systems with a
compact dynamical symmetry group, or those with a non-compact dynamical
symmetry group with a square-integrable Hilbert space [131, 139, 144].

In the following, we will derive the classical limit of the quantum partition
function for a general system with an arbitrary compact symmetry group G. Similar
to the SU.(2) case, we assume that the quantum Hamiltonian is a sum of monomials
which are products of commuting operators. Let .V � be the Hilbert space which
carries a unitary irreducible representation of the compact group G, where .� is
the highest weight in the representation space .V �. Without loss of generality, the
highest weight in .V � is assumed to be a multiple of a single fundamental weight .f ,
i.e., .� = Lf . Let .d = dim V � and .Ti be the generators of the group G. Similar to
the SU.(2) case, one may construct the quantum partition function

.Z(β,L) ≡ d−|�| Tr� exp[−βH(Ti/L)]. (11.18)

Using the Lieb-Berezin inequalities, one can derive the following upper and lower
bounds for the quantum partition function

.Zcl(β) ≤ Z(β,L) ≤ Zcl(β, δL), (11.19)

where .δL = 1 + 2(�, δ)/(�,�) = 1 + 2(f , δ)/(f ,f ) · L−1 is a scale factor
multiplied on each generator .Ti , and .δ ≡ 1

2

∑
α∈�+ α is the half-sum of the positive

roots, namely, the Weyl vector. As a first example, the single positive root of
SU.(2) is .α = 1 and thus .δ = 1/2. In the irreducible representation with highest
weight .� = j , i.e., a spin-j system, one obtains .f = α = 1 and .L ≡ j , and
thus .δL ≡ 1 + 1/j . As another example, the three positive roots of SU.(3) are

.α1 ≡ ( 1
2 ,

√
3

2 ), .α2 ≡ ( 1
2 , −√

3
2 ), and .α3 ≡ (1, 0), respectively, and thus .δ = (1, 0).

In the fundamental representation .3 and its complex conjugate representation .3̄
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of SU.(3), the fundamental weights are .f 1 ≡ ( 1
2 , 1

2
√

3
) and .f 2 ≡ ( 1

2 ,− 1
2
√

3
),

respectively. Hence, in the irreducible representations of SU.(3) with highest weight
.� = Lf 1 or .� = Lf 2, the scale factor .δL = 1 + 3/L. Finally, from Eq. (11.19),
the classical limit of the quantum partition function is

. lim
L→∞ Z(β,L) = Zcl(β) = lim

L→∞ Zcl(β, δL). (11.20)

11.2 Coherent State Representation of Partition Function

The quantum partition function of a single particle governed by a Hamiltonian
.H(p̂, x̂) can be written as

.Z(β) ≡ Tr e−βĤ =
∫

dx〈x|e−βĤ |x〉, (11.21)

where .β ≡ 1/(kBT ), .kB is the Boltzmann constant, and .|x〉 is the position
eigenstate. Hence, in order to evaluate the quantum partition function .Z(β), one
only needs to evaluate the transition amplitude of the imaginary time evolution
operator from a space-time point .(xa,−iτa) to another space-time point .(xb,−iτb)

for an interval .τb − τa = βh̄

.K(xb, τb; xa, τa) ≡ 〈xb|e−(τb−τa)Ĥ /h̄|xa〉. (11.22)

Following all the steps in the derivation of the real-time path integral, one obtains
the transition amplitude for the case of imaginary time

.K(xb, τb; xa, τa) = lim
N→∞

N∏

n=1

∫ ∞

−∞
dxn

N+1∏

n=1

〈xn|e−εĤ/h̄|xn−1〉 (11.23)

= lim
N→∞

N∏

n=1

∫ ∞

−∞
dxn

N+1∏

n=1

∫ ∞

−∞
dpn

2πh̄
e

1
h̄

∑N+1
n=1 [ipn(xn−xn−1)−εH(pn,xn)]

= lim
N→∞

N∏

n=1

∫ ∞

−∞
dxn

(
m

2πh̄ε

)N+1
2

e
− ε

h̄

∑N+1
i=1 [ m

2
(xn−xn−1)2

ε2 +V (xn)]

=
∫ (xb,τb)

(xa,τa)

D[x(τ)]e −1
h̄

∫ τb
τa

dτ
[

m
2 (

dx(τ )
dτ

)2+V (x(τ))
]

=
∫ (xb,τb)

(xa,τa)

D[x(τ)]e −1
h̄

∫ τb
τa

dτH(x(τ))
,
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where .ε ≡ (τb−τa)/(N+1). Hence, one sees that the imaginary time path integral is
nothing but a sum over the trajectories which start at the point .(xa, τa) and terminate
on .(xb, τb), where the exponential of the action is modified by a sign change
in the kinetic energy, which yields a Hamiltonian instead of a Lagrangian in the
exponential. As a remark, the measure appearing in the imaginary time path integral
is equivalent to the measure defined in the study of continuous stochastic processes
by Wiener in 1932, which is named as the Wiener process thereafter. Using the
imaginary time path integral, the quantum partition function can be expressed as

.Z(β) =
∫

dx

∫ x(βh̄)=x

x(0)=x

D[x(τ)]e −1
h̄

∫ βh̄
0 dτ

[
m
2 (

dx(τ )
dτ

)2+V (x(τ))
]

. (11.24)

Hence, the quantum partition function is a sum over all periodic trajectories of
period .βh̄.

For a general many-body Hamiltonian expressed in a second quantized form,
instead of using the position and momentum eigenstates, one may use the coherent
states to establish a functional integral representation of the many-body evolution
operator. As before, one needs to evaluate the matrix element of the evolu-
tion operator between an initial coherent state and a finial coherent state, i.e.,

.U(α∗
k,b, tb;αk,a, ta) ≡ 〈αb|e−i(tb−ta)Ĥ /h̄|αa〉, where

.|α〉 ≡ exp

(
−1

2

∑

k

|αk|2
)

exp

(
∑

k

αka
†
k

)
|0〉, (11.25)

〈α| ≡ 〈0| exp

(
−1

2

∑

k

|αk|2
)

exp

(
∑

k

α∗
k ak

)
,

and .|0〉 is the vacuum state. As usual, one may break the time interval .[ta, tb] into
.N + 1 time steps of size .ε ≡ (tb − ta)/(N + 1), and inserting the over-completeness
relations for the coherent states at the nth time step

.I =
∏

k

d2αk,n

π
|αk,n〉〈αk,n|, (11.26)

then the matrix element of the evolution operator can be written as

.U(α∗
k,b, tb;αk,a, ta) = lim

N→∞

∫ N∏

n=1

∏

k

d2αk,n

π
e
− i

h̄
S(α∗,α)

, (11.27)

−i

h̄
S(α∗,α) ≡

N+1∑

n=1

(
∑

k

α∗
k,n(αk,n−1 − αk,n) − iε

h̄
H(α∗

k,n, αk,n−1)

)
.
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In real time, the term .e−iεH/h̄ is oscillatory, and the convergence of the integrals
involved is ensured by the factor .e

−α∗
k,nαk,n arising from the measure, whereas

in imaginary time, the term .e−εH/h̄ is bounded, as a physical Hamiltonian is
bound from below, which implies that the Hamiltonian function .H(α∗

k,n, αk,n−1) ≡
〈αk,n|Ĥ |αk,n−1〉/〈αk,n|αk,n−1〉 is also bound from below. Hence, the convergence
of the integrals is again ensured by the Gaussian factor arising from the measure.

Using the imaginary time path integral for the transition amplitude, the partition
function for a bosonic many-body system can be expressed as

.Z(β) ≡ Tr e−βĤ =
∏

k

d2αk

π
〈αk|e−βĤ |αk〉 (11.28)

= lim
N→∞

∫ N+1∏

n=1

∏

k

d2αk,n

π
e
− 1

h̄
S(α∗,α)

,

where the periodic boundary conditions .αk,0 = αk and .αk,N+1 = α∗
k are imposed,

and the Euclidean action is given by

.
1

h̄
S(α∗,α) ≡ α∗

k,1(αk,1 − αk,N+1) + ε

h̄
H(α∗

k,1, αk,N+1) (11.29)

+
N+1∑

n=2

[
∑

k

α∗
k,n(αk,n − αk,n−1) + ε

h̄
H(α∗

k,n, αk,n−1)

]
.

Using the Wiener measure, the continuous limit of the above coherent states path
integral can be written as

.Z(β) =
∫

αk(βh̄)=αk(0)

D(α∗
k , αk)e

−1
h̄

∫ βh̄
0 dτ {∑k α∗

k ∂τ αk+H(α∗
k ,αk)}. (11.30)

As a first example, one may evaluate the quantum partition function for a system of
noninteracting particles which are described by the Hamiltonian

.H =
∑

k

εkâ
†
k âk. (11.31)

Using Eqs. (11.28) and (11.29), one immediately obtains

.Z(β) = lim
N→∞

∏

k

N+1∏

n=1

∫
d2αk,n

π
exp

⎧
⎨

⎩−
N+1∑

i,j=1

α∗
k,iS

(k)
ij (β)αk,j

⎫
⎬

⎭ (11.32)

= lim
N→∞

∏

k

[det S(k)(β)]−1
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where .S
(k)
ij (β) are the elements of a matrix .S(k)(β) given by

.S(k)(β) ≡

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · · · · 0 −sk

−sk 1 0 · · · 0 0
0 −sk 1 · · · 0 0
...

...
...

...
...

...

0 0 · · · −sk 1 0
0 0 · · · · · · −sk 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11.33)

and .sk ≡ 1 − βεk/(N + 1). Expanding by minors of the first row, one obtains

. lim
N→∞ det S(k)(β) = lim

N→∞(1 + (−1)N+2(−sk)
N+1) (11.34)

= lim
N→∞ det S(k)(β)

[
1 − (1 − βεk

N + 1
)N+1

]

= 1 − e−βεk .

Hence, one immediately obtains the familiar result for noninteracting bosons

.Z(β) =
∏

k

(1 − e−βεk )−1. (11.35)

11.3 Quantum Phase Transitions

When classical phase transition is mentioned, one refers it to an abrupt change
in the physical properties of a system caused by a change of temperature. The
reason for such a phenomenon is the change of symmetry of the phases involved,
which is driven by thermal fluctuations. As a result, classical phase transition
cannot happen when the temperature drops to zero, as the thermal fluctuations
are absented. However, quantum phase transitions driven by a change of control
parameters controlling an interaction strength in the system’s Hamiltonian persist at
zero temperature, as quantum fluctuations always exist at zero temperature. In this
regard, quantum phase transitions are qualitative changes in the structure of quantum
systems induced by a change in the parameters of the Hamiltonian [145, 146] (e.g.,
varying coupling constants).

The term quantum phase transitions, or quantum critical phenomena, was
originated from condensed matter physics, which was first introduced for ordered-
disordered phase transitions, i.e., ferromagnetic-paramagnetic transitions, in spin
systems at zero temperature by John Hertz [135]. He evaluated the quantum partition
function using coherent states path integrals for fermions and investigated the
critical behaviors of the spin systems at finite temperatures, as well as the zero-
temperature limit by using the momentum-space renormalization group approach.
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Nearly at the same period, the research of quantum phase transitions was conducted
by a group of nuclear physicists [136, 144] in the context of Lipkin-Meshkov-Glick
model [147] under the name of ground state phase transitions and was subsequently
further developed [40,148,149] in even-even nuclei in the context of the interacting
boson model [150] and in the fermion dynamical symmetry model for high- and
low-spin nuclear collective states [151, 152, 152] in the 1980s. Interestingly, since
then, the Lipkin-Meshkov-Glick model has been extensively used to study the
relationship between quantum entanglement and quantum phase transitions [153–
156]. With the aid of the generalized coherent states, they are sufficient to build up
a conceptual framework to explain quantum phase transitions.

The interacting boson model is formulated in terms of Lie algebras, but the shape
of the nucleus is based on geometry. In order to extract geometry from the algebra
of the interacting boson model, one needs the theory of generalized coherent states,
as well as the associated geometric coset spaces [9, 10]. In the interacting boson
model, the collective excitations of nuclei are described by bosons. In particular,
the low-lying collective states of nuclei are described by a monopole s-boson and
a quadrupole d-boson. In the language of second quantization, the boson creation
and annihilation operators are denoted as .ŝ†, .d̂†

μ, .ŝ, and .d̂μ, respectively, where
.μ = 0,±1,±2. The operators satisfy the bosonic commutation relations

.[ŝ, ŝ†] = 1, [ŝ, ŝ] = [ŝ†, ŝ†] = 0, (11.36)

[d̂μ, d̂
†
μ′ ] = δμμ′ , [d̂μ, d̂μ′ ] = [d̂†

μ, d̂
†
μ′ ] = 0,

[ŝ, d̂†
μ] = [ŝ, d̂μ] = [ŝ†, d̂†

μ] = [ŝ†, d̂μ] = 0.

One may use a more compact notation for the boson operators, i.e., .b̂†
α and .b̂α with

.α = 1, · · · , 6 and .b̂1 ≡ ŝ, .b̂2 ≡ d̂2, .b̂3 ≡ d̂1, .b̂4 ≡ d̂0, .b̂5 ≡ d̂−1, and .b̂6 ≡ d̂−2.
Then the commutation relations become the standard ones

.[b̂α, b̂
†
α′ ] = δαα′ , [b̂α, b̂α′ ] = [b̂†

α, b̂
†
α′ ] = 0. (11.37)

A direct computation shows that the set of bilinear products of boson creation and
annihilation operators satisfies the canonical commutation relations

.[b̂†
αb̂β, b̂†

γ b̂δ] = b̂†
αb̂δδβγ − b̂†

γ b̂βδδα. (11.38)

which are nothing but the standard commutation relations of .u(6), the unitary
algebra in six dimensions. In other words, the 36 operators .b̂†

αb̂β span the Lie algebra
.u(6). From Eq. (11.38), one immediately obtains .[b̂†

i b̂i , b̂
†
j b̂j ] = 0. Hence, the set of

operators .b̂
†
i b̂i (.i = 1, · · · , 6) spans the maximal commutative subalgebra, namely,

the Cartan subalgebra of .u(6). Also, from Eq. (11.38), one obtains

.[b̂†
i b̂i , b̂

†
j b̂k] = (δij − δik)b̂

†
j b̂k. (11.39)
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Let .Eij ≡ b̂
†
i b̂j with .i �= j , .Hi ≡ b̂

†
i b̂i be an element of the Cartan subalgebra, and

.H ≡ (H1, · · · ,H6). From Eq. (11.39), one can readily show that

.[H, E12] = (1,−1, 0, 0, 0, 0)E12, [H, E21] = (−1, 1, 0, 0, 0, 0)E21, (11.40)

[H, E13] = (1, 0,−1, 0, 0, 0)E13, [H, E31] = (−1, 0, 1, 0, 0, 0)E31,

...

[H, E56] = (0, 0, 0, 0, 1,−1)E56, [H, E65] = (0, 0, 0, 0,−1, 1)E65.

Let .ei (.i = 1, · · · , 6) be the basis vectors of a six-dimensional Euclidean space.
Then Eq. (11.40) yields .[H, Eα] = αEα , which is the standard commutation
relations between the elements of the Cartan subalgebra and the shift operators,
where .Eei−ej ≡ Eij = b̂

†
i b̂j . Hence, the Lie algebra .u(6) is classified by the 30

roots .ei − ej with .i �= j . One may choose the 15 roots .ei − ej with .i < j as a set of
positive roots. Let .αi ≡ ei − ei+1. Among the positive roots, one can show that .α1,
.· · · , .α5 are the simple roots.

In accordance with the above choice of positive roots, the highest weight state in
the fully symmetric representation of .u(6) should be

.|�,�〉 = |N, 0, 0, 0, 0, 0〉 = (b̂
†
1)

N

√
N ! |0, 0, 0, 0, 0, 0〉, (11.41)

where .|0, 0, 0, 0, 0, 0〉 is the vacuum state, and the highest weight state is annihilated
by all shift operators labeled by positive roots, i.e., .Eei−ej |�,�〉 = b̂

†
i b̂j |�,�〉 = 0

for .i < j . The highest weight .� is determined by the eigenvalues of the elements
of the Cartan subalgebra

.H1|�,�〉 = b̂
†
1b̂1|N, 0, 0, 0, 0, 0〉 = N |�,�〉, (11.42)

Hi |�,�〉 = b̂
†
i b̂i |N, 0, 0, 0, 0, 0〉 = 0 for i > 1,

or equivalently .H|�,�〉 = �|�,�〉, which yields .� = (N, 0, 0, 0, 0, 0). For those
shift operators labeled by negative roots, i.e., .Eei−ej

= b̂
†
i b̂j with .i > j , one obtains

.Eei−ej |�,�〉 = b̂
†
i b̂j |N, 0, 0, 0, 0, 0〉 = 0 for i > j > 1, . (11.43a)

Eei−e1 |�,�〉 = b̂
†
i b̂1|N, 0, 0, 0, 0, 0〉 = √

N |� + ei − e1〉, (11.43b)
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where .� + e2 − e1 = (N − 1, 1, 0, 0, 0, 0), .� + e3 − e1 = (N − 1, 0, 1, 0, 0, 0),
etc. Hence, the .su(6) coherent states .|�,�〉 are given by

.|�,�〉 ≡ �|�,�〉 = exp[
∑

i

(ηiEei−e1 − η∗
i Ee1−ei

)]|�,�〉 (11.44)

≡ exp[
∑

i

(ηi b̂
†
i b̂1 − η∗

i b̂
†
1b̂i )]|�,�〉.

Using the original notation, the .su(6) coherent states can be written as

.|N; ημ〉 ≡ exp[
∑

μ

(ημd̂†
μŝ − η∗

μŝ†d̂μ)] ŝ†N

√
N ! |0〉, (11.45)

where .|0〉 is a shorthand of the vacuum state .|0, 0, 0, 0, 0, 0〉. One can show that the
.su(6) coherent states can also be written as

.|N; ζμ〉 = 1√
N !

[√
1 − |ζ |2ŝ† +

∑

μ

ζμd̂†
μ

]N

|0〉, (11.46)

where .ζμ = (sin |η|/|η|)ημ, .|ζ |2 ≡∑μ ζ ∗
μζμ, and .|η|2 ≡∑μ η∗

μημ. Consequently,
the .su(6) coherent state .|N; ζμ〉 represents a condensate of N bosons which are
in the same single-particle state and is obtained by applying to the vacuum state
the condensate creation operator N times. Here, the condensate creation operator
.b̂

†
c ≡ √1 − |ζ |2ŝ† +∑μ ζμd̂†

μ is a specific superposition of the s and d bosons.
One may also introduce five complex projective coordinates .αμ via .αμ ≡

ζμ/
√

1 − |ζ |2, so that the .su(6) coherent state becomes

.|N;αμ〉 = 1√
N !

[
1√

1 + |α|2 (ŝ† +
∑

μ

αμd̂†
μ)

]N

|0〉, (11.47)

where .|α|2 ≡ ∑
μ α∗

μαμ = |ζ |2/(1 − |ζ |2) = tan2 |η|. The five variables .αμ are
the collective surface variables in the laboratory frame, which define the quadrupole
moments of a nucleus. Reality of the surface yields the relation .α∗

μ = (−1)μα−μ.
Hence, the coordinate space of the collective model, when restricted to quadrupole
degrees of freedom, is a real five-dimensional Euclidian space .R

5. As the shape
of the surface is independent of its orientation, the collective surface variables .αμ

transform like the covariant components of irreducible spherical tensor of rank
2, i.e., under arbitrary rotation of the coordinate system described by the Euler
angles .� ≡ (θ1, θ2, θ3), the collective surface variables .αμ transform in accordance
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with [157]

.D̂(�)αμ =
∑

ν

ανD
2
νμ(�), (11.48)

where .D̂(�) ≡ e−iθ1Ĵz e−iθ2Ĵy e−iθ3Ĵz is the rotation operator in the .z − y′ − z′
convention and .D2

νμ(�) ≡ 〈2, ν|D̂(�)|2, μ〉 are the elements of the Wigner D-
matrix. One may transform the laboratory collective variables .αμ to the intrinsic
variables .aμ in the rotating frame of reference, so that

.aμ =
∑

ν

ανD
2
νμ(�) or αλ =

∑

μ

aμD2
λμ(�)∗. (11.49)

The intrinsic collective variables .aμ are fixed by the conditions .aμ ∈ R and .a∗
μ =

(−1)μa−μ, which yields .a0 = β cos γ , .a±1 = 0, and .a±2 = 1√
2
β sin γ . Hence, in

the rotating frame of reference, the .su(6) coherent state becomes

.|N;β, γ 〉 ≡ 1√
N ! [b̂

†
c (β, γ )]N |0〉, (11.50)

where

.b̂†
c (β, γ ) ≡ 1√

1 + β2
(s† + β cos γ d̂

†
0 + β√

2
sin γ (d̂

†
2 + d̂

†
−2)) (11.51)

is the condensate creation operator for the collective excitations of nuclei, where .β

and .γ are two intrinsic surface variables, and .β2 ≡ ∑
μ |αμ|2 is a rotational invari-

ant obtained from the scalar product of the collective variables .αμ by themselves.
The radius .β quantifies the degree of deformation, where .β = 0 corresponds to
spherical nuclei and .β > 0 corresponds to deformed shapes. The angular variable .γ

quantifies the type and orientation of the deformed shape, where values of .γ equal
to multiples of .π/3 correspond to prolate spheroid (American football) or oblate
spheroid (M&M’s candy) with different symmetry axes, while intermediate values
of .γ are associated with triaxial ellipsoid without axial symmetry.

In order to study quantum phase transitions in the shapes of nuclei, one may
consider the following Hamiltonian:

.Ĥ = ε0[(1 − ζ )n̂d − ζ

4N
Q̂χ · Q̂χ ], (11.52)

where .T̂ · T̂ ≡ ∑
μ(−1)μT̂μT̂−μ = ∑

μ T̂ †
μT̂μ is the square of a tensor operator

.T̂ , .n̂d ≡ d̂† · d̃ = ∑
μ d̂†

μd̂μ is the d boson number operator, .d̃μ ≡ (−1)μd̂−μ are

the adjoint operators of .d̂μ, and .Q̂χ ≡ (d̂† × ŝ + ŝ† × d̃)(2) + χ(d̂† × d̃)(2) is the
quadrupole operator. Here, .T̂ (j1)×T̂ (j2) is the tensor product of two spherical tensor
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operators .T̂ (j1) and .T̂ (j2) defined by

.[T̂ (j1) × T̂ (j2)]jm ≡
∑

m1,m2

〈j1,m1; j2,m2|j,m〉T̂ (j1)
m1 T̂

(j2)
m2 , (11.53)

where .〈j1,m1; j2,m2|j,m〉 denotes the standard Clebsch-Gordan coefficients. A
direct computation yields the following expectation values with respect to the .su(6)

coherent states .|N;β, γ 〉

.〈N;β, γ |n̂d |N;β, γ 〉 = Nβ2

1 + β2 , . (11.54a)

〈N;β, γ |Q̂χ · Q̂χ |N;β, γ 〉 = N

1 + β2

[
4(N − 1)β2

1 + β2 + 5 + β2
]

(11.54b)

−4

√
2

7

χN(N − 1)β3

(1 + β2)2
cos 3γ + 2

7

χ2N(N − 1)β4

(1 + β2)2
+ χ2Nβ2

1 + β2
.

Hence, the expectation value of the boson Hamiltonian, Eq. (11.52), with respect to
the .su(6) coherent state .|N;β, γ 〉 is given by

.E(N;β, γ ) ≡ 〈N;β, γ |Ĥ |N;β, γ 〉 (11.55)

= ε0

[
(1 − ζ )N − (1 + χ2)

ζ

4

](
β2

1 + β2

)
− 5ε0ζ

4

(
1

1 + β2

)

− ε0ζ

4

N − 1

(1 + β2)2

(
4β2 − 4

√
2

7
χβ3 cos 3γ + 2

7
χ2β4

)
.

which yields the following energy function:

.E(N;β, γ ) = E0 + Aβ2 + Bβ3 cos 3γ + Cβ4

(1 + β2)2 , (11.56)

where the parameters .E0, A, B, and C are related to N , .ε0, .ζ , and .χ by .E0 = − 5
4ε0ζ

and

.A = ε0[(1 − ζ )N + ζ(1 − 1

4
χ2 − (N − 1))], (11.57)

B = ε0ζ(N − 1)

√
2

7
χ,

C = ε0[(1 − ζ )N + ζ(1 − 1

4
χ2 − (N − 1)χ2

14
)].
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The ground state energy of the interacting boson model Hamiltonian is obtained by
minimizing .E(N;β, γ ) with respect to .β and .γ , i.e., .E0(N) = min E(N;β, γ ).
Here, the local extrema of the energy function .E(N;β, γ ) are determined by

.
∂E

∂β
= β

(1 + β2)2
(2A + 3Bβ cos 3γ + 4Cβ2). (11.58a)

− 4β3

(1 + β2)3
(A + Bβ cos 3γ + Cβ2) = 0,

∂E

∂γ
= −3Bβ3

(1 + β2)2 sin 3γ = 0. (11.58b)

From the above equations, one immediately sees that the point .β = 0 is always
the local extrema of the energy function .E(N;β, γ ). For .β �= 0, Eq. (11.58b) yields
.sin 3γ = 0, or equivalently .γ = 0, π/3, 2π/3, π, 4π/3 or .5π/3, which corresponds
to axially symmetric quadrupole shapes, i.e., prolate spheroid or oblate spheroid;
Eq. (11.58a) yields

.2A ± 3Bβ + (4C − 2A)β2 ∓ Bβ3 = 0, (11.59)

where the plus and minus signs correspond to .γ = 0, 2π or .4π , and .γ = π, 3π

or .5π , respectively. Without loss of generality, we will assume that .γ = 0 in the
following discussion: For .C > 0 and .A < B2/4C, the energy function .E(N;β, γ )

has a double root at .β = 0 and two real roots at .β = β±, where

.E(N;β, γ )|γ=0 = E0 + β2(β − β+)(β − β−)

(1 + β2)2 , (11.60)

β± ≡ −B ± √
B2 − 4AC

2C
.

Hence, the energy function .E(N;β, γ ) has a global minimum at .β > 0 (or .β < 0,
depending on the sign of B), which corresponds to a deformed axially symmetric
shape. On the contrary, for .C > 0 and .A > B2/4C, the energy function .E(N;β, γ )

for .γ = 0 only has a double root at .β = 0, and hence the energy function has a
single global minimum at .β = 0, which corresponds to a spherical shape. At the
critical value .A = B2/4C, the minimum at .β > 0 (or .β < 0) and the minimum at
.β = 0 swap.

As the ground state energy .E0(N) of the interacting boson model Hamiltonian
is obtained by minimizing the energy function .E(N;β, γ ) with respect to .β and
.γ , one concludes that the ground state energy .E0(N) is an increasing function of
the parameter A when .A < B2/4C and becomes a constant when .A > B2/4C.
Hence, the parabola .B2 = 4AC in the parameter space constitutes a quantum phase
transition in the shape of atomic nuclei from deformed axially symmetric shape
to spherical shape. From Eq. (11.56), one immediately sees that near the critical



236 11 Quantum Phase Transitions

parabola .B2 = 4AC in the parameter space, the ground state energy .E0(N) =
min E(N;β, γ ) as a function of the parameter A has the form

.

⎧
⎪⎨

⎪⎩

E0(N) = E0 + β2
c (A + Bβc + Cβ2

c )

(1 + β2
c )2 , for A � B2/4C,

E0(N) = E0, for A > B2/4C,

(11.61)

where .βc is the smallest root of the cubic equation .β3 + (η − 2/η)β2 − 3β − η = 0
with .η ≡ B/2C. As an example, for .B = 2 and .C = 1, one gets .βc = −1, and thus
the ground state energy for .A � 1 has the form .E0(N) ≈ E0 + 1

4 (A − 1). From
Eq. (11.61), one immediately obtains

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂E0(N)

∂A
= β2

c

(1 + β2
c )2 , for A � B2/4C,

∂E0(N)

∂A
= 0, for A > B2/4C.

(11.62)

It shows that the ground state energy itself is continuous across the critical phase
parabola .B2 = 4AC, but the slope of the ground state energy with respect to the
parameter A has a jump, which corresponds to a first-order phase transition in the
Ehrenfest classification.

We now focus on the case with .C > 0 and .A < 0. In such a case, the energy
function .E(N;β, γ ) always has a double root at .β = 0 and two real roots .β+ and
.β−. For .B > 0, from the relation .β+ + β− = −B/C, one sees that either both
roots are negative or .|β−| > β+, when .β+ is positive. For both cases, the global
minimum of the energy function .E(N;β, γ ) is located at .β < 0. On the contrary,
for .B < 0, from the relation .β+ + β− = −B/C, one sees that either both roots are
positive or .β+ > |β−|, when .β+ is positive. For both cases, the global minimum
of the energy function .E(N;β, γ ) is located at .β > 0. In particular, when .B ≈ 0,
from Eq. (11.59), one obtains .2A+(4C−2A)β2 ≈ 0, and thus the global minimum
of the energy function .E(N;β, γ ) is located at .βc ≈ ±√|A|/(2C − A), depending
the sign of B. From Eq. (11.56), one immediately sees that near the critical line
.B = 0 for .A < 0, the ground state energy .E0(N) = min E(N;β, γ ) as a function
of the parameter B has the form

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E0(N) = E0 + β2
c (A + B|βc| + Cβ2

c )

(1 + β2
c )2

, for B � 0,

E0(N) = E0 + β2
c (A − B|βc| + Cβ2

c )

(1 + β2
c )2 , for B � 0.

(11.63)

As an example, for .C = −A = 1, one obtains .βc = ±√
1/3 and .E0(N) = E0 +√

3
16 (B − 2√

3
) for .B � 0, and .E0(N) = E0 −

√
3

16 (B + 2√
3
) for .B � 0. From
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Fig. 11.1 Schematic of the quantum phase diagram for shape transitions in atomic nuclei. The
critical line .B = 0 for .A < 0 which separates the two phases of oblate and prolate shapes and the
critical hyperbola .B2 = 4CA which separates the two phases of spherical and deformed shapes
are shown in red. Here, the parameter C is fixed at .C = 1. The variations of the energy function
.E(N; β, γ ) with respect to parameters A and B are shown in blue, where we have neglected the
constant energy .E0. The top three insets are for .(A,B) = (−1, 2), .(1, 2), and .(2, 2), respectively,
the middle inset is for .(A,B) = (−1, 0), and the bottom three insets are for .(A,B) = (−1,−2),
.(1,−2), and .(2,−2), respectively

Eq. (11.63), one immediately obtains

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂E0(N)

∂B
= β2

c |βc|
(1 + β2

c )2 , for B � 0,

∂E0(N)

∂B
= −β2

c |βc|
(1 + β2

c )2
, for B � 0,

(11.64)

where .|βc| ≡ √|A|/(2C − A). It shows that the ground state energy itself is
continuous across the critical line .B = 0 for .A < 0, but the slope of the ground
state energy with respect to the parameter B has a jump, which also corresponds to
a first-order phase transition in the Ehrenfest classification (Fig. 11.1).

To summarize, the critical parabola .B2 = 4CA constitutes a quantum phase
transition between the spherical and deformed shapes of the nucleus, whereas the
critical line .B = 0 for .A < 0 constitutes a quantum phase transition between the
prolate and oblate shapes of the nucleus. All the spherical-prolate, spherical-oblate,
and prolate-oblate phase transitions are of the first order in the sense of the Ehrenfest
classification. However, there is one exception at the triple point .(A,B) = (0, 0) at
which the three phases coexist. One may show that the quantum phase transition at
the triple point is of the second order in the sense of the Ehrenfest classification. To
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show this, let us recall that for .B ≈ 0 and .A � 0, the global minimum of the energy
function .E(N;β, γ ) is .βc ≈ ±√−A/(2C − A) ≈ ±√−A/(2C), depending the
sign of B, whereas the global minimum for .B = 0 and .A � 0 is .βc = 0. Hence, a
direct computation yields

.

⎧
⎪⎨

⎪⎩
E0(N) = E0 − A2

4C
, for A � 0 and B = 0,

E0(N) = E0, for A � 0 and B = 0.

(11.65)

From Eq. (11.65), one immediately obtains

.

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂2E0(N)

∂A2
= − 1

2C
, for A � 0 and B = 0,

∂2E0(N)

∂A2
= 0, for A � 0 and B = 0.

(11.66)

It shows that both the ground state energy and its first-order derivative with respect
to the parameter A are continuous at the triple point .(A,B) = (0, 0). But the second-
order derivative of the ground state energy with respect to the parameter A has a
jump at the triple point, which constitutes a second-order phase transition in the
Ehrenfest classification.

Exercises

11.1. For a semisimple Lie algebra with rank r , show that the Casimir operator C2
in the Cartan basis is given by

.C2 ≡
r∑

i=1

H 2
i +

∑

α∈�+
(EαE−α + E−αEα) = (� + 2δ,�)I,

where I is the unit matrix in the associated irreducible representation and δ ≡
1
2

∑
α∈�+ α is the corresponding Weyl vector, i.e., the half-sum of the positive roots.

11.2. For n = 1, 2, verify that the su(6) coherent state can be written in two
different ways by direct computation

.|N; ημ〉 ≡ exp[
∑

μ

(ημd̂†
μŝ − η∗

μŝ†d̂μ)] ŝ†N

√
N ! |0〉

= 1√
N !

[√
1 − |ζ |2ŝ† +

∑

μ

ζμd̂†
μ

]N

|0〉,
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where ζμ = (sin |η|/|η|)ημ, |ζ |2 ≡∑μ ζ ∗
μζμ, and |η|2 ≡∑μ η∗

μημ.

11.3. Verify that the boson condensate with particle number N

.|N;β, γ 〉 = 1√
N ! [b̂

†
c (β, γ )]N |0〉

satisfies the normalization condition 〈N;β, γ |N;β, γ 〉 = 1.

11.4. Verify the following relations:

.ŝ|N;β, γ 〉 =
√

N

1 + β2 |N − 1;β, γ 〉,

d̂μ|N;β, γ 〉 =
√

N

1 + β2
aμ|N − 1;β, γ 〉.

11.5. Show that [d̂† × s̃](J )
M = δJ,2d̂

†
Ms and [s̃† × d̃](J )

M = δJ,2ŝ
†d̂M .

11.6. Verify the following relations:

.[d̂† × d̃](2)
2 =

√
2

7
(d̂

†
2 d̂0 + d̂

†
0 d̂−2) +

√
3

7
d̂

†
1 d̂−1,

[d̂† × d̃](2)
1 =

√
3

7
(d̂

†
−1d̂−2 − d̂

†
2 d̂1) −

√
1

14
(d̂

†
1 d̂0 − d̂

†
0 d̂−1),

[d̂† × d̃](2)
0 =

√
2

7
(d̂

†
2 d̂2 − d̂

†
0 d̂0 + d̂

†
−2d̂−2) −

√
1

14
(d̂

†
1 d̂1 − d̂

†
−1d̂−1),

[d̂† × d̃](2)
−1 =

√
3

7
(d̂

†
1 d̂2 − d̂

†
−2d̂−1) −

√
1

14
(d̂

†
−1d̂0 − d̂

†
0 d̂1),

[d̂† × d̃](2)
−2 =

√
2

7
(d̂

†
−2d̂0 + d̂

†
0 d̂2) +

√
3

7
d̂

†
−1d̂1.

11.7. Verify the following relations:

.〈N;β, γ |(d̂† × d̃)
(2)†
±2 (d̂† × d̃)

(2)
±2|N; β, γ 〉 = N

7
[ (N − 1)β4 sin2 2γ

(1 + β2)2
+ β2(1 + cos2 γ )

1 + β2
],

〈N;β, γ |(d̂† × d̃)
(2)†
±1 (d̂† × d̃)

(2)
±1|N; β, γ 〉 = N

7

β2

1 + β2
(sin2 γ + 1

2
),
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〈N;β, γ |(d̂† × d̃)
(2)†
0 (d̂† × d̃)

(2)
0 |N;β, γ 〉 = 2N

7
[ (N − 1)β4 cos2 2γ

(1 + β2)2
+ β2

1 + β2
].

11.8. Verify the following expected values:

.〈N;β, γ |n̂d |N;β, γ 〉 = Nβ2

1 + β2 ,

〈N;β, γ |Q̂0 · Q̂0|N;β, γ 〉 = N

1 + β2

(
4(N − 1)β2

1 + β2 + 5 + β2
)

,

〈N;β, γ |(Q̂χ − Q̂0) · (Q̂χ − Q̂0)|N;β, γ 〉 = 2

7

χ2N(N − 1)β4

(1 + β2)2 + χ2Nβ2

1 + β2 ,

〈N;β, γ |Q̂0 · (Q̂χ − Q̂0)|N;β, γ 〉 = −2

√
2

7

χN(N − 1)β3

(1 + β2)2
cos 3γ.

where n̂d ≡ d̂† · d̃ = ∑μ d̂†
μd̂μ, d̃μ ≡ (−1)μd̂−μ, Q̂0 ≡ (d̂† × ŝ + ŝ† × d̃)(2), and

Q̂χ ≡ Q̂0 + χ(d̂† × d̃)(2).



12Quantum Chaos

12.1 Overview

Since the dawn of science began with the prediction of solar eclipse by Thales of
Miletus in the sixth century B.C., the attempt to predict future events based on past
causes is one of the primary goals of science. It is no wonder that in the rational
era of Kepler, Newton, and Laplace, the central dogma of natural philosophy, or
what is now called classical mechanics, was to provide a complete description of
a dynamical system, e.g., future positions of a collection of particles, based on the
properties of the present physical state. In fact, the causal determinism à la Laplace
was the dominant philosophy among scientists and philosophers for more than 300
years. Amidst such an overwhelming deterministic thinking, it was Henri Poincaré
who discovered what is now known as deterministic chaos through his studies of
restricted three-body problem in the 1880s.

In the middle of 1885, to honor the 60th birthday of King Oscar II of Sweden
and Norway, an international prize competition was officially announced in Volume
7 of the newly established journal Acta Mathematica. In order to attract the most
brilliant mathematicians in the realm of mathematical analysis, the prize jury which
consisted of Mittag-Leffler in Stockholm, Karl Weierstrass in Berlin, and Charles
Hermite in Paris agreed on four problems. One of the proposed problem was related
to the study of Fuchsian function, which was invented by Poincaré himself and made
him famous 5 years earlier. But, in correspondence with Mittag-Leffler, Poincaré
decided to tackle the first and the most difficult problem, proposed by Weierstrass,
namely, the n-body problem: “For a system of arbitrarily many mass points that
attract each other according to Newton’s law, assuming that no two points ever
collide, find a series expansion of the coordinates of each point in known functions
of time converging uniformly for any period of time.” Throughout the eighteenth
and nineteenth centuries, even the greatest mathematicians and astronomers held the
idea that the solar system had to be stable. For this, Weierstrass had had a great hope
on receiving an analytical method of solution, and with which one could exclude that
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the orbit of solar planets varies drastically over a long period of time or even that
one of the planets can be rejected from the system.

In May 1888, Poincaré submitted his memoir for the Prize of King Oscar II
entitled Sur le problème des trois corps et les équations de la dynamique (The
Three-Body Problem and the Equations of Dynamics) after enduring hard work.
In his memoir, Poincaré initiated a veritable conceptual revolution. He abandoned
the transitional approach to dynamical differential equations based on infinite
trigonometric series. Instead, he studied the flows in phase space by using ingenious
geometric and topological methods to extract the qualitative aspects of the entire
dynamical system. Having these innovative tools on hand, Poincaré is sufficient to
prove his stability theorem à la Poisson, or what is now known as the Poincaré
recurrence theorem: “almost every trajectory of the restricted three-body system
passes arbitrarily close to its initial position infinitely often.”

Although the Poincaré recurrence theorem is profound for sure, it is definitely
too abstract to be useful in practice. To this end, Poincaré continued his exploration
of stability in the restricted three-body systems with a body A of mass .1 − μ, a
body B of mass .μ, and a body C of negligible mass. He sought to understand
how and in what conditions periodic orbits exist in the restricted three-body
systems. Remarkably, Poincaré was able to prove that as long as the mass .μ is
sufficiently small, the restricted three-body system always possesses periodic orbits.
In particular, the number of periodic trajectories tends to infinity as .μ tends to 0.
Bolstered by his new results about periodic orbits, Poincaré found and obtained new
types of solutions, namely, asymptotic solutions, which asymptotically approached
an unstable periodic orbit when moving forward and backward in time. Using
Poincaré’s terminology, one may denote .Ss

T as the set of initial positions of all
trajectories asymptotic to T in the future and .Su

T as the set of initial positions of
all trajectories asymptotic to T in the past. Poincaré proved that both .Ss

T and .Su
T are

surfaces, namely, asymptotic surfaces associated to T , from which he elaborated
on the second stability result a theorem on the coincidence of asymptotic surfaces:
“As long as the mass .μ is sufficiently small, the asymptotic surfaces .Ss

T and .Su
T

associated to the unstable periodic orbit T coincide.” This theorem clearly explains
the stability à la Poincaré: the trajectories that had nearly periodic motion in the
past, but whose motion was disturbed later, will finally recover their initial nearly
periodic motion. As such, after almost 300 handwritten pages of manuscripts full
of novel and sophisticated geometric arguments, Poincaré announced a claim of
stability for the restricted three-body systems. In March 1888, Poincaré received
a sum of 2500 kronor together with a gold medal from the hands of the Swedish
ambassador in Paris. It seems that the problem of solar stability had been settled,
and the causal determinism has been recovered. But in hindsight it is, merely, the
end of the beginning.

On the last day of November 1889, the prize jury Mittag-Leffler received an
ominous telegram from Paris, in which Poincaré requested to stop the presses of his
memoir for the Prize of King Oscar II. He had found a serious error. Soon, Mittag-
Leffler discovered that the error was graver than what Poincaré described in the
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letter arrived the next day. In a sleepless night, Mittag-Leffler wrote disappointedly:
“It is even not true that asymptotic surfaces are closed.”

The major fault that Poincaré had made was to implicitly assume that the two
asymptotic surfaces .Ss

T and .Su
T , which formed by the associated solutions attracted

or repelled from the periodic orbit, smoothly glued together to comprise a single
closed surface sheet, and no intersections occurred between them. After an intense
work for more than 1 month, Poincaré was able to submit a substantially revised
memoir on January 5, 1890. After altering some of those implicit assumptions that
he made previously, Poincaré arrived at the inevitable conclusion that deterministic
chaos was unavoidable in restricted three-body problem. Poincaré found to his
astonishment that the asymptotic solution curves could in fact intersect each other
and would have to intersect at an infinity of points! A sequence of new intersection
points are generated by iteration from the original intersection point. Poincaré
called these intersections homoclinic points, namely, they asymptotically both leave
and return to the same unstable periodic orbit. Still more astonishing to him
is he soon discovered that, due to the stretching and folding of the asymptotic
surfaces, an infinity of new intersections from distinct homoclinic trajectories
appears between the original ones. All these intersections added together form a
seemingly endless maze-like intricate patterns made of infinitely fine web, or a
homoclinic tangle, using Poincaré’s terminology. Even Poincaré himself found it
difficult to understand the stunning implications of his discovery of homoclinic
points and orbits: in a tiny volume of phase space, an infinite number of small
slices of asymptotic surfaces enclose delicate stretched-and-folded regions which
comprise different kinds of orbits. This makes any predictions of the fate of an orbit,
if not completely impossible, practically meaningless, as it is inherently sensitive to
the initial conditions.

Eventually the door of causal determinism à la Laplace was closed, but the
door to the new wonderland of deterministic chaos just opened. After Poincaré’s
pioneering works, many great names contributed to the qualitative studies of
dynamical systems through which various aspects of deterministic chaos were
manifested. Those great names included George Birkhoff from America, Aleksandr
Lyapunov from Russia, and Jacques Hadamard from France, to name a few. But
it was not until 1963 that mankind’s view of nature had been profoundly and
fundamentally changed. At that particular year, an article by the meteorologist
Edward Lorenz at MIT was published, in which a strange attractor with fractal
structure, namely, the Lorenz attractor, was discovered. Unlike ordinary attractors
which are a collection of points or limit cycles, a strange attractor is a dynamical
equilibrium which is composed of those trajectories that pass through the entire
phase space. More importantly, in studying the return maps à la Poincaré for strange
attractors, iterated maps emerged, which led to the celebrated discovery of the
universality of chaos.

But it was not until the mid-1970s that different train of thoughts about iterated
maps started to converge. In 1975, dynamical systems theorist James A. Yorke
and his PhD student Tien-Yien Li at the University of Maryland published the
paper entitled “Period Three Implies Chaos” [158], which proved that in an iterated
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map, the existence of a cycle of period three will inevitably lead to the existence
of uncountable infinitude of points that never map to any cycle. Remarkably,
a slightly weaker result that a cycle of period three implies cycles of arbitrary
periods had already been proved in 1964 by Oleksandr M. Sharkovsky, a Ukrainian
mathematician who worked in the Ukrainian school of dynamical systems research.
Meanwhile, in 1976, the mathematically oriented population biologist Robert May,
who was then a biology professor at Princeton University and the chief scientific
adviser to the UK Government, published a paper in Nature entitled “Simple
Mathematical Models with Very Complicated Dynamics” [159], in which the so-
called logistic map was studied in detail and popularized by himself. But the real
discovery of the quantitatively universal properties of chaos had to await Mitchell J.
Feigenbaum and his discovery of Feigenbaum constant .δ ≈ 4.6692016.

Mitchell Feigenbaum was born in Philadelphia in 1944 and raised in Brooklyn.
His parents are Jewish emigrants from Poland and Ukraine. In 1960, at the age
of 16, Feigenbaum enrolled in the City College of New York, studying electrical
engineering. After graduation he had to make a decision on whether to become
a money-making electrical engineer or to become a scientist who can explore the
physical world as a career option. He decided to choose the latter. In 1964, he went
to MIT. He initially enrolled in a PhD program in electrical engineering, but he
quickly switched to physics. In the 1960s, particle physics entered its golden age.
But Feigenbaum has not taken a strong interest in this trend of development, though
he finished his PhD thesis on a topic in particle physics set by his advisor Francis
E. Low. In 1970, when he was 26, he found a postdoc position at Cornell. But he
still struggled with motivation. During his 2 years at Cornell, Feigenbaum did not
produce any visible academic output. But it was in Cornell that he first met Peter A.
Carruthers who became his “Bo Le” several years later.

After Cornell, Feigenbaum left for his second postdoc position at Virginia
Polytechnic Institute, at which he performed even worse than what he did in Cornell.
He didn’t interact with his colleagues very well. After 2 more years, he ended
up with only a three-page paper. In 1974, he was 30 years old, and it still wasn’t
clear what was going to happen. With only one paper, his prospects after Virginia
Polytechnic Institute were bleak. However, his luck was on the turn. Peter A.
Carruthers had been hired to establish the theory division of Los Alamos National
Laboratory and given carte blanche to hire and fire staff without legal obstacles.
He recognized Feigenbaum’s talent and had a strong feeling that Feigenbaum had
the potential to make impactful discoveries. Thus, he brought Feigenbaum to Los
Alamos, despite other people’s doubt and negativity. In 1974, there was breaking
news that Kenneth G. Wilson had solved the long-standing Kondo problem using
his new technique called renormalization group. Carruthers suggested Feigenbaum
to try to apply this method to study fluid turbulence.

Before Feigenbaum started to get involved in the research of turbulence, David
P. Ruelle and Floris Takens predicted in a paper in 1971 that fluid turbulence
could develop through strange attractors in the nonlinear dynamical Navier-Stokes
equations. In fact, it was exactly this paper that coined the phrase “strange attractor.”
In their approach, one of the characteristics of fluid turbulence was the onset of
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bifurcation cascade. A single bifurcation is a sudden alteration of an orbit when
external parameters are only slightly changed. In contrast, a bifurcation cascade
was a succession of bifurcations that doubled the period of an orbit each time,
until chaos fully emerged. Hence, Feigenbaum tried to understand bifurcation
cascade in iterated map, a simplified version of differential equation by making time
discrete. He was particularly interested in the bifurcation cascade of the logistic
map: .xi+1 = rxi(1 − xi), where r represents the growth rate and .xi represents
the ratio of existing population to the maximum population. Feigenbaum found a
strong similarity between the bifurcation cascade of the iterated map and the concept
of real-space renormalization, where both of which involved scale transformations
from smaller to larger structures. Feigenbaum thus studied how the bifurcations of
the logistic map depended on the growth rate. He computed the threshold values .rn
at the n-th period-doubling bifurcation and then studied the ratios of the intervals
.(rn+2 − rn+1)/(rn − rn−1). He found to his astonishment that the ratio approached
to a limiting value of .δ ≈ 4.6692016. Feigenbaum had soon discovered that .δ

seemed to be a universal constant as long as the iterated map had a single quadratic
maximum. In 1976, Feigenbaum tried to submit a manuscript to the prestigious
journal Advances in Mathematics to announce his results. He waited 6 months,
but his manuscript finally got rejected. He tried again, sending the manuscript to
the SIAM Journal on Applied Mathematics. It got rejected again. Eventually, in
late 1977, the editor of the Journal of Statistical Physics, Joel Lebowitz, agreed to
publish his manuscript. Thus, Feigenbaum’s results were officially announced in a
paper entitled “Quantitative Universality for a Class of Nonlinear Transformations”
in 1978 [160]. Remarkably, in 1979, Albert J. Libchaber in Paris reported his
results on an experiment in liquid helium that period doubling is observed in the
transition to turbulence, with the same exponent .δ that was theoretically predicted by
Feigenbaum. Feigenbaum and Libchaber immediately became famous. They shared
the Wolf Prize in Physics in 1986. Since then, the theory of deterministic chaos
was promoted to all corners of science and technologies and soon even became a
common occurrence in the public media.

However, nearly one century ago, mankind witnessed the genesis of a new
fundamental theory of physics, namely, quantum mechanics, which provides a
description of the physical properties of matter at the microscopic level. As such,
it is logically impossible that the strange behaviors of deterministic chaos have
no relationship with quantum mechanics at all, as classical mechanics is merely
a limiting theory for an aggregate of microscopic particles. But, due to the inherent
different mathematical structures attached to quantum and classical mechanics, it
has been a huge challenge for generations of physicists to establish a fundamental
theory of deterministic chaos which is completely based on quantum mechanics.
In the modern theory of deterministic chaos, a dynamical system is said to be
chaotic, if it has a Lorenz attractor-like subset S of the phase space, which is
invariant in the sense that every evolution starting in the subset will stay in it, and
the subset S fulfills the following properties: (1) Orbits in the subset are sensitive
to initial conditions, i.e., the phase space trajectories exiting from nearly points
in S diverge exponentially. (2) No evolution starting in S is periodic or quasi-
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periodic. (3) No evolution in S tends to a periodic or quasi-periodic evolution when
time tends to infinity. From the above crucial properties of chaotic systems, one
clearly sees that deterministic chaos only happens in nonlinear systems. As such,
the existence of deterministic chaos deeply contradicts with the linear evolution in
quantum mechanics. What is even worse is that due to the Heisenberg uncertainty
principle, the concept of trajectory simply does not exist in quantum mechanics, not
to mention the infinitely fine web of homoclinic tangle, or strange attractor with
fractal structure. Hence, it is apparently unclear how classical chaotic dynamics,
comprised of trees of cycles of increasing lengths and self-similar structures, which
is utterly a nonlinear phenomenon, can manifest itself at the quantum level.

In fact, since the genesis of quantum mechanics, the question of how classical
mechanics can be a limiting case of quantum mechanics, besides a few examples in
simple regular systems, was not rigorously answered. This was largely due to the
empirical successes of quantum mechanics in explaining and predicting microscopic
physical behaviors, so that a microscopic description of the discovery of Poincaré
has no imminent requirement. Indeed, it was not until the latter half of the twentieth
century when the research in nonlinear science has attracted an intense focus due
to the increasing of computing power; the question of microscopic origin of the
observed deterministic chaos became an important subject of theoretical physics.

During the last several decades, attempts to establish relationship between
the classical deterministic chaos and the quantum mechanics have triggered a
new field called quantum chaos, which is a field still full of conundrums and
opportunities, rather than well-posed problems. Up to date, the research of seeking
relationship between classical deterministic chaos and quantum mechanics falls into
two main categories: one studies the energy spectrum, and the other studies the
wave functions. For the former, the energy-level spacing distribution for regular
quantum systems obeys Poisson statistics, while for generic fully chaotic systems,
according to the Bohigas-Giannoni-Schmit conjecture proposed nearly 40 years ago
[161], highly excited energy levels obey universal spectral statistics. The analysis of
highly excited energy-level statistics-based large random matrices was developed in
the late 1950s and early 1960s by Eugene P. Wigner [162], Freeman J. Dyson [163],
and Madan L. Mehta [164], respectively. In the absence of geometric symmetries,
the prediction of random matrix theory only depends on whether the system is
not time-reversal (.T ) invariant, described by Gaussian unitary ensemble (GUE),
or is time-reversal invariant with either .T 2 = 1 or .−1, described by Gaussian
orthogonal ensemble (GOE) or Gaussian symplectic ensemble (GSE), respectively.
These results have been verified numerically for many dynamical systems, but a
rigorous proof for them, unfortunately, has not yet been put forward. For the latter,
it was discovered by Eric J. Heller in 1984 in his study of configuration space
distribution of eigenstates that many “scar” phenomena associated with the classical
unstable periodic orbits are exhibited in the projection of wave function on either
configuration space or phase space [165]. It implies that the classical trajectories
and the phase space distribution of quantum density for classical regular motion
are actually closely correlated. Interestingly, scars have recently been re-explored
in a new light after experimentalists at Harvard surprisingly demonstrated periodic
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orbits in their quantum simulator [166]. It was suggested that these periodic orbits
could be due to a many-body version of quantum scar [167].

Though the abovementioned approaches to quantum chaos have shed invalu-
able light on the signatures of classical deterministic chaos in quantum systems,
we shall focus our attention on the time-honored question of quantum-classical
correspondence. Here, quantum-classical correspondence means the search for an
unambiguous classical limit, starting purely from quantum mechanics. This would
be crucial to understanding quantum chaos, partly because the essential concepts
for analyzing classical deterministic chaos, such as orbits, attractors, or even strange
attractors, are either absent or meaningless in quantum mechanics and also because
classical regularity is based on the criterion of integrability, a concept which is not
yet fully developed in quantum mechanics.

Historically, the standard quantization techniques were developed in integrable
systems. Hence, there is no compelling reason to apply these methods to a classical
chaotic system. In this regard, the direction going from classical to quantum
mechanics seems to not have the necessary theoretical underpinning. As such, it
may be more fruitful to study how quantum mechanics can be used to describe
nonlinear phenomena in the classical world. In other words, one has to answer the
question of how the nonlinear dynamics of classical objects can be understood from
quantum mechanics. To this end, a thorough understanding of deterministic chaos in
the framework of quantum mechanics requires a rigorous formulation of quantum-
classical correspondence, from which one can reveal how classical mechanics is
hidden in the quantum world and how deterministic chaos can naturally emerge
from the quantum mechanics.

In conventional quantum mechanics literatures, the fundamental problem of
quantum-classical correspondence is either it has to be entirely omitted or imple-
mented through the action .h̄ → 0 which is logically possible but empirically
impossible. The reduced Planck constant is .h̄ = 6.58212 × 10−16eV · s and—
mathematically allowed to vary it notwithstanding—it is a constant by definition. In
fact, the action of letting the universal reduced Planck constant .h̄ to vanish is simply
impossible in nature. Mathematically, this is an ill-defined limit as there is no known
physical operator which is expressible in terms of .h̄.

This becomes strikingly evident when the relativistic versus nonrelativistic
mechanics are contrasted. In such a case, the speed of light c is a universal constant,
and .v/c → 0 is a well-defined nonrelativistic limit. In the same vein, the reduction
from quantum to classical mechanics should also depend on the ratio of a physical
quantity and .h̄. For a one-dimensional system, the action .S[q(t)] given by the time
integral of the Lagrangian for an input evolution .q(t) is such a unique quantity.
However, beyond the simplest one-dimensional case, the situation becomes murky
for an obvious reason. An n-dimensional integrable system can always be regarded
as a combination of n one-dimensional systems. Hence, even if the action of the
entire system is large, it does not automatically imply that the corresponding action
for every subsystem must also be large. To this end, it is conceivable that even
with a large action, a multidimensional system can still be very much quantum
mechanical. For a non-integrable system, the precise meaning of .h̄ → 0 is even
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more ambiguous. This can be seen in the path integral formulation in which the
action is obtained by an integration over an appropriate time interval which for a
chaotic system could be infinitely large. Thus it is not all clear that a large action
can be the determining condition to physically realize the limit of .h̄ → 0. As such,
the exploration of the chaotic phenomena by varying the reduced Planck constant .h̄

without fully examining all its ramifications could be hazardous.
From this point of view, the basic question one must be faced with in exploring

the onset of chaos from fundamental quantum theory is that what is quantum non-
integrability in finite systems. Quantum mechanics is built on a framework that
completely differs from classical mechanics. It stands on a very solid mathematical
foundation and does not require any classical input. Hence, a crucial issue for
studying quantum non-integrability is to see whether the related concept of quantum
integrability can be properly defined. Overall, the integrability of the physical
equations of motion, albeit quantum or classical, may be well defined. For instance,
the linear Schrödinger equation is integrable. However, the story hardly terminates
here as quantum dynamics describes the various correlated distributions of physical
objects via the wave functions, rather than the wave functions themselves. Moreover,
for any realistic quantum system, its wave function state space is an infinite-
dimensional space. Hence, the linearity of the Schrödinger equation or, more
precisely, the quantum mechanical hypothesis of linear superposition of wave
functions by no means implies the linearity of quantum phenomena or the lack of
chaos.

After all, integrability must be a rigorous mathematical concept. In order to
describe the global properties of nonlinear phenomena, it has to be precisely defined.
In classical mechanics, the precise definition of integrability dated back to the
nineteenth century and was due to the France mathematician Joseph Liouville.
According to the Liouville-Arnold theorem, a system with n degrees of freedom
described by the Hamiltonian H and the Poisson bracket .{, } is said to be Liouville
integrable if there exists n conversed quantities .Ii in involution, i.e., with vanishing
Poisson brackets .{Ii, Ij } = 0 for arbitrary .i, j = 1, · · · , n. In quantum mechanics,
although the Schrödinger equation is linear, or more precisely, the wave functions
are linear vectors in the Hilbert space, the basic algebraic structure to determine
quantum dynamics is encoded in the commutators, or Lie brackets. Mathematically
both the Poisson brackets in classical mechanics and the Lie brackets in quantum
mechanics lie at the same level, namely, they define the algebraic structures of
group. Hence, it is natural to ask whether one can establish the concept of quantum
integrability in finite systems based on the algebraic structures of group, so that
the notion of classical integrability becomes a limiting case of the general concept
of quantum integrability. Fortunately, the answer should be positive. In fact, it
is exactly the group representation theory that provides the mathematical basis
of quantum mechanics. Starting from the group theory, whether a system can be
analytically solved can be completely determined and can be defined as a criterion
of integrability [16, 168].

Based on the group theoretical approach, one can develop a semi-quantal
approach to the problem of quantum-classical correspondence as well as quantum
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non-integrability. Here the term semi-quantal is used to distinguish its difference
from the familiar semiclassical approach to path integrals formalism. The semi-
classical approach, which is based on the stationary phase approximation of the
Feynman path integral, is essentially to use the classical mechanics to approximately
extract the quantum phenomena. In the last few decades, there are numerous
attempts proposed to improve the semiclassical approach by including quantum
corrections to the stationary phase approximation, so that the quantum dynamics can
be treated approximately from the classical mechanics plus quantum corrections as a
perturbative effect in .h̄. One can of course surmise from various integrable examples
that the semiclassical approach can provide a good, and at times exact, description
of the quantum system for integrable systems. But there is no theoretical foundation
that these results lend confidence for such approaches for chaotic systems and
from which one may still have a reasonable tool to explore the quantum chaotic
phenomena.

However, it is hard to imagine that the semiclassical approaches can serve as
the starting point in the study of quantum-classical correspondence, especially
in addressing the time-honored problem of quantum chaos, as we argued in the
above. The semiclassical methods can provide a good description of quantum
dynamics only for those systems whose quantum correlations do not significantly
alter their corresponding classical phase space structures. A chaotic system has an
unstable phase space structure as it is susceptible to non-perturbative alteration by
the slightest change in its dynamics. The quantum correlation of a microscopic
system is unavoidable. For example, the leading quantum correlation, in the mean-
field description, is equivalent to an effective potential. When a system is chaotic,
such an effective potential will probably destroy the original classical phase space
structure, and thus one is unable to expect the reproduction, even approximately,
of the quantum dynamics of a chaotic system with semiclassical approaches. In
contrast, although the phase space structure of an integrable system may also be
altered by quantum correlation, such alteration hardly changes the topology of the
phase space structure due to the constraint of integrability.

It is worth noting that the semi-quantal approach which we shall discuss in
the following is still a stationary phase approximation. However, it does not trace
its origin to the classical mechanics and is based on the generalized phase space
path integral, which is derived from the quantum evolutionary equation using
the generalized coherent state theory. One of the most notable properties of the
generalized phase space path integral is that the Lagrangian or the action itself in
this formalism is solely derived from quantum mechanics. As we shall see later on,
this effective action includes the leading order of quantum correlations. In fact, only
in certain limits, the effective action can be reduced to the classical action. When
this happens, the semi-quantal approach is exactly the same as the semiclassical
approach.

In addressing the problems of quantum-classical correspondence and quantum
chaos, one has to go beyond the classical limit. The semi-quantal method thus
provides a description of the dynamics with the influence of the leading quantum
correlation on the phase structure of dynamics. On the one hand, it provides a link
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between quantum and classical mechanics, while on the other hand, it provides a
basis for studying chaos by exploring the effect of quantum correlation in the chaotic
phase space structure. For this reason, one may regard this approach suitable for
examining the quantum-classical correspondence with the goal of generating the
classical physics from the quantum mechanics. Of course, one may also incorporate
higher-order quantum correlations in the stationary phase approximation within the
semi-quantal approach, similar to that within the semiclassical approach, though it
will not be treated in the following:

12.2 Geometry in Quantum Systems

For a classical system, dynamical observables are differential analytic functions
defined on a phase space. The phase space is coordinated by the physically inde-
pendent degrees of freedom. A point in the phase space represents a physical state.
For a given initial point, the time evolution of a system is uniquely characterized
by a trajectory in the phase space. Chaotic dynamics is the study of topological
characteristics of the trajectories as a whole, i.e., the phase space structures.

On the other hand, the dynamics properties of a quantum system are described
within a Hilbert space, denoted as .H. The dynamical observables are represented
by self-adjoint operators acting on this space. A physical state of the system is
described by a vector, or more precisely, a ray in .H, the equivalent class of
all vectors in .H which differs by a phase factor. Hence, the Hilbert space of
a system plays a role analogous to that of classical phase space. Unfortunately,
a Hilbert space cannot be directly defined as a quantum phase space since its
dimensions cannot be interpreted as physical degrees of freedom, nor can it be
directly reduced to a classical phase space in the classical limit. Moreover, the wave
functions are not observables themselves. Hence, for quantum dynamics, there is no
a priori phase space description. Yet, the study of quantum-classical correspondence
demands knowledge of the associated geometry for a given Hilbert space, which
quantum mechanics can be embedded in and from which classical mechanics can
be reproduced.

In 1966, F. Strocchi attempted to construct a phase space description of quantum
mechanics [169]. He demonstrated that for a given Hilbert space .H with basis .|αi〉,
.i = 1, 2, · · · , N , any state .|ψ〉 ∈ H is expressible as

.|ψ〉 =
N∑

i=1

ui |αi〉, (12.1)

where .ui(i = 1, · · · , N) are complex coefficients which completely determine .|ψ〉.
As a remark, N can be in principle infinite. For the convenience of discussion, we
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shall consider N as finite. By setting

.ui ≡ 1√
2
(qi + ipi), u

∗
i ≡ 1√

2
(qi − ipi) (12.2)

and substituting Eq. (12.1) into the time-dependent Schrödinger equation

.i
∂|ψ〉
∂t

= H |ψ〉, (12.3)

one can readily find that the Schrödinger equation can be revised as the Hamiltonian
equations

.
dqi

dt
= ∂H(q, p)

∂pi

,
dpi

dt
= −∂H(q, p)

∂qi

, (12.4)

where .H(q, p) is the matrix element of the Hamiltonian operator for the state .|ψ〉

.H(q, p) ≡ 〈ψ |H |ψ〉 =
∑

ik

〈αi |H |αk〉u∗
i uk (12.5)

= 1

2

∑

ik

Hik(pipk + qiqk + ipkqi − ipiqk).

Moreover, in this formulation, the commutation relationship .[A,B] of any two
physical observables A and B can be expressed as a Poisson bracket

.〈ψ |[A,B]|ψ〉 = {A,B}, (12.6)

where

.A(q, p) ≡ 〈ψ |A|ψ〉 =
∑

ik

〈αi |A|αk〉u∗
i uk (12.7)

= 1

2

∑

ik

Aik(pipk + qiqk + ipkqi − ipiqk).

The implication of the Hamiltonian Eq. (12.4) and the Poisson bracket Eq. (12.6)
is that quantum mechanics can formally be embedded into a classical mechanics
which is defined in a 2N -dimensional phase space. From this formalism, it seems
that one may superficially conclude that a quantum system is always equivalent
to an N -coupled classical harmonic oscillator system. More importantly, as the
Hamiltonian function is quadratic, the Hamiltonian equation (Eq. (12.4)) is, by
definition, integrable. One immediate consequence is that a quantum system is
always integrable and thus “quantum chaos” simply does not exist.
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However, the above conclusion is false. According to the probabilistic inter-
pretation of quantum mechanics, one requires that the relevant Hilbert space is
square-integrable,

.

∫
||ψ〉|2du < ∞, (12.8)

and .|ψ〉 can always be multiplied by a constant c, i.e., .|ψ〉 → |ψ̃〉 ≡ c|ψ〉, such
that .〈ψ̃ |ψ̃〉 = 1. This condition imposes a constraint on the 2N -dimensional phase
space,

.

N∑

i=1

|ũi |2 = 1, (12.9)

where .ũi ≡ cui . As a result, the 2N -dimensional phase space described by
Eq. (12.4) is reduced to a complex projected space, mathematically denoted as
CP.(N−1). In this manifold, the Hamiltonian function is not an N -coupled harmonic
oscillator in quadrature. Moreover, since CP.(N − 1) is compact, its topological
structure is different from the usual classical phase space. In this regard, before
the quantum equations can be expressed in terms of Hamilton-type equations, one
needs to verify whether a symplectic structure still exists. Thus, although Eq. (12.4)
is defined on the 2N -dimensional phase space, it does not represent a formulation
of a quantum system without the constraint Eq. (12.9).

Hilbert spaces are still the basic framework of quantum mechanics. In the
group representation theory, the Hilbert space is realizable by a unitary irreducible
representation space of an algebra. Moreover, for a given algebra, there is an
associated group which carries a natural geometrical manifold. The above CP.(N−1)

space is in fact a subspace of the parametrized manifold of SU.(N), where SU.(N)

is a group of the N -level system. In the following, we will show that all the
Hilbert spaces of quantum systems are indeed associated with a subspace of their
group geometric manifold, and from which the physical phase space can be firmly
established [16, 168].

To establish the geometry for quantum systems, one needs a dynamical group
structure. According to the axioms of quantum mechanics, a quantum system is
a self-adjoint operator algebra, denoted by .g and spanned by the basic physical
observables. The algebraic structure is given by the commutation relations. Explic-
itly, the systems’ Hamiltonian H and the transition operators .{A} can both be
expressed as functions of a set of the basic operators .{Ti} with .i = 1, · · · , n of .g

.H = H(Ti), A = A(Ti). (12.10)

This set of operators satisfies a closed commutation relationship, .[Ti, Tj ] =∑n
k=1 Ck

ij Tk , namely, it spans an algebra where the structure constants of .g are .Ck
ij .
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We then introduce the concept of dynamical group. A dynamical group, denoted
by G, is defined by a unitary exponential mapping of .g

.g → G ≡
{

exp

(
i
∑

i

αiTi

)}
, (12.11)

where unitarity is required by quantum mechanics. Mathematically, G is called the
covering group of .g. According to the group representation theory, the state space
in quantum mechanics .H is a representation space of .g. Group theory ensures that
.H can always be decomposed into a direct sum of the various unitary irreducible
carrier spaces .H� of .g

.H =
∑

�

⊕Y�H�, (12.12)

where .� is a vector which characterizes an irreducible representation of .g. When .g

is a simple Lie algebra, .� is the highest weight of this irreducible representation,
and .Y� is the degeneracy of .� in .H. Different irreducible representations .H� do not
mix. Hence, without loss of generality, we can confine our discussion to a relevant
irreducible subspace .H� of .H.

Once a dynamical group structure is given, the system’s Hilbert space .H can
be completely specified. In order to investigate the dynamical properties, it is
convenient to choose a basis for .H. This is analogous to defining a coordinate
system for the classical phase space. In classical mechanics, the integrability of
a system depends on the number of degrees of freedom, which is specified by a
choice of a set of coordinates for the phase space. For an integrable system, there
is always a suitable coordinate system, namely, action and angle coordinates, in
which the integrability is manifested. In order to study quantum dynamics and its
integrability which contains the classical integrability as a limit, it is imperative
to develop the concept of degrees of freedom in quantum mechanics. However,
in the development of quantum mechanics, this problem did not receive sufficient
attention, and consequently the concept of quantum integrability has not yet been
defined.

A specification of the dynamical degrees of freedom is essential to establish the
basis of a physical state space. In quantum mechanics, selecting a basis of .H is
mostly a matter of taste and experience. However, in group representation theory,
there exists a rule to construct all possible bases of a given .H; see, for example,
Ref. [170]. Such a rule is merely on the essence of the quantum mechanical degrees
of freedom and quantum integrability, which can be used as a starting point for
our discussion. Such a discussion requires in-depth details of group representation
theory. But since the group representation theory is the mathematical underpinning
of quantum mechanics, such discussions are unavoidable.

For most quantum systems, their operator algebras .g are Lie algebras. It is known
that for a Lie algebra .g with rank l and dimension n, there are a large although finite
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number .λ of subalgebra chains .{g1, g2, · · · , gλ}. For each group chain .g ⊂ gα ,
.α = 1, · · · , λ, there is a complete set of commuting operators, .{Qα

i }, introduced by
Dirac [51], such that

.[Qα
i ,Qα

j ] = 0, i, j = 1, · · · , dα, (12.13)

where .dα is the number of the operators in the complete set of commuting operators
for a specific chain, which is chain independent, and is given by

.dα = l + n − l

2
= d. (12.14)

The chain independent of .dα means that for a given .g, this is a universal number.
Moreover, .H can be completely specified by a set of quantum numbers related to the
eigenvalues of the complete set of commuting operators

.Qα
i |γ α

i 〉 = γ α
i |γ α

i 〉, i = 1, · · · , d. (12.15)

Generally speaking, the complete set of commuting operators has two classes of
quantum numbers: a fully degenerate set and a non-fully degenerate set. The former
satisfies the identity that

.Qα
i |�〉 = c|�〉, (12.16)

where c are constants for any states .|�〉 ∈ H. The operators in the complete set
of commuting operators which do not satisfy the above equation are called the
non-fully degenerate operators. The basis of .H can only be specified by non-fully
degenerate quantum numbers.

It must be emphasized that the number of non-fully degenerate quantum numbers
depends only on the details of .H and does not depend on the subgroup chains. For
example, if .H is the carrier space of the non-degenerate irreducible representation
of .g, then the non-fully degenerate operators in the complete set of commuting
operators contain l Casimir operators of .g, and the number of such operators is

.M = d − l = n − l

2
. (12.17)

Obviously, this number is independent of the subgroup chains. For the degenerate
irreducible representations of .g, although .M < (n− l)/2, one can still show that it is
independent of the subgroup chains. Hence, the number M of non-fully degenerate
operators is unique for a quantum system in a given .g and can be determined from
any one of the subalgebra chains of .g. In this regard, one may conclude that the
non-fully degenerate operators in the complete set of commuting operators can
completely determine the structure of .g. The number of the non-fully degenerate
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operators, defined by M , plays the role of quantum dynamical degrees of freedom
[168].

A crucial point is that the quantum dynamical degrees of freedom, when defined
in this way, would include both the internal and intrinsic quantum degrees of
freedom. It appears to be a feasible definition because of the following reasons:
(i) Consistency. For a classical Hamiltonian system with M degrees of freedom, it
is required that the canonically quantized system should have M quantum numbers
to specify the basis of its Hilbert space .H. Based on our definition, this is exactly the
case. For example, for a system with n structureless particles, the corresponding
degrees of freedom are 3n. It is well known that its Hilbert space, .H, can be
spanned by the simultaneous eigenstate set .{ψ(r1, r2, · · · , rn)} of the 3n position
observables

.(Xiψ)(r1, r2, · · · , rn) = xiψ(r1, r2, · · · , rn), . (12.18)

(Yiψ)(r1, r2, · · · , rn) = yiψ(r1, r2, · · · , rn), . (12.19)

(Ziψ)(r1, r2, · · · , rn) = ziψ(r1, r2, · · · , rn), (12.20)

for .i = 1, · · · , n. Then the complete set of commuting operators here is constructed
by the 3n observables, .Xi , .Yi , and .Zi , with .i = 1, · · · , n, which are all the non-fully
degenerate operators for the associated Hilbert space. Equation (12.18) shows that
there exist 3n quantum numbers .xi , .yi , and .zi to specify a basis of the Hilbert space
for this system with 3n degrees of freedom. (ii) Universality. Since this definition of
quantum dynamical degrees of freedom does not require, explicitly or implicitly, the
assumption that the system must have a classical counterpart, it is applicable to any
quantum system with both classical-like and additional internal degrees of freedom.
(iii) Uniqueness. Since the complete set of commuting operators is provided by
the algebraic structure of the basic physical observables without specifying a priori
the Hamiltonian operator, it depends only on the global structure of the system’s
dynamical algebra .g. Hence, the number of quantum dynamical degrees of freedom
in this definition is unique for a specific Hilbert space .H.

Notice that the number of quantum dynamical degrees of freedom does not
include the number of fully degenerate operators in the complete set of commuting
operators. This is because these operators are equivalent to constant multiples of
the identity operator and are important only for determining the irreducibility of .H.
The expectation values of the fully degenerate operators themselves are dynamical
independent and cannot be relevant to the degrees of freedom.

Once the number of quantum dynamical degrees of freedom is determined, any
state .|ψ〉 ∈ H can be obtained by a series of repeated action of elementary excitation
operators on a fixed state .|ψ0〉 ∈ H. Explicitly, the fixed state .|ψ0〉 can be defined
uniquely as follows: if G is compact, the state .|ψ0〉 is the lowest or highest weight
state of .H; if G is non-compact, it is merely the lowest bound state of .H. After the
fixed state .|ψ0〉 is specified, operators .X

†
i ∈ g are elementary excitation operators if
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and only if

.X
†
i |ψ0〉 = 0 or |ψ0〉. (12.21)

Hence, all the states .|ψ〉 of the system can be generated as follows:

.|ψ〉 = F(X
†
i )|ψ0〉,∀|ψ〉 ∈ H�, (12.22)

where .F(X
†
i ) is a polynomial of .{X†

i }. It can be proven that the number of

independent elementary excitation operators .{X†
i } is identical to the number of

non-fully degenerated commuting observables of the complete set of commuting
operators, i.e., the number of quantum dynamical degrees of freedom. Let us now
discuss some examples.

Example 1. The harmonic oscillator with an .h4 algebra and a Fock space .V F as
its Hilbert space. This space can be determined by the complete set of commuting
operators of .h4, namely, the Casimir operators of the following sub-algebraic chain:

.h4 ⊃ u(1) ⊗ u(1). (12.23)

Although .h4 is a rank-2 non-semisimple Lie algebra, the Casimir operators of .h4
and .u(1) are nevertheless proportional to the identity operator I . Hence, there is
only one irreducible representation for .h4. From the algebraic chain Eq. (12.23), the
basis of .V F is given by the eigenstates of .n̂: .{|n〉, n = 1, 2, · · · }, where .n̂|n〉 = n|n〉.
It is evident that .n̂ is the only non-fully degenerate operator in the complete set of
commuting operators of .V F . Hence, as in the classical case, the number of quantum
dynamical degrees of freedom is one. In addition, the fixed state of .V F is the ground
state .|0〉. The elementary excitation operator is the particle creation operator .a†, and
any state .|ψ〉 ≡ ∑

n cn|n〉 ∈ V F has the form .|ψ〉 = F(a†)|0〉, where

.F(a†) =
∑

n

cn

(a†)n√
n! . (12.24)

Example 2. The spin system with an .su(2) as its dynamical algebra and an
irreducible representation space .V 2j+1 of .su(2). This space can be specified by
the complete set of commuting operators of the following sub-algebraic chain:

.su(2) ⊃ u(1), (12.25)

where .J 2 ≡ J 2
0 + (J+J− + J−J+) is the Casimir operator of .su(2). Since .su(2)

is rank 1, there is only one class of irreducible representation, and it is uniquely
determined by the total spin j . The basis .{|jm〉,m = −j, · · · , j} of .V 2j+1 is
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specified by .J0:

.J 2|jm〉 = j (j + 1)|jm〉, J0|jm〉 = m|jm〉. (12.26)

Evidently, the only non-fully degenerate operator in the complete set of commuting
operators is .J0, and thus the number of quantum dynamical degrees of freedom for
the spin system is one. Since SU.(2), the covering group of .su(2), is compact, the
fixed state can be taken as the lowest weight state of .V 2j+1: .|ψ0〉 ≡ |j − j 〉. Then
the elementary excitation operator of spin systems is .J+. One can generate any state
.|ψ〉 ≡ ∑j

m=−j cm|jm〉 ∈ V 2j+1 by the action of a polynomial of .J+ on .|j − j 〉 as
.|ψ〉 = F(J+)|j − j 〉, where

.F(J+) ≡
j∑

m=−j

cm

1

(j + m)!
(
C

j+m

2j

)−1/2
(J+)j+m. (12.27)

Example 3. The radial motion of a particle in a central potential has a dynamical
algebra .su(1, 1). Its discrete irreducible representation .D+(k) has a basis .{kn〉, n =
0, 1, 2, · · · } which can be specified by the complete set of commuting operators of
the following sub-algebraic chain:

.su(1, 1) ⊃ u(1), (12.28)

where .K2 ≡ K2
2 − K2

1 − K2
2 is the Casimir operator of .su(1, 1) and

.K2|kn〉 = k(k − 1)|kn〉,K0|kn〉 = (k + n)|kn〉. (12.29)

The non-fully degenerate operator is .K0. Hence, the number of quantum dynamical
degrees of freedom for .su(1, 1) is one. In this irreducible representation of .D+(k),
the lowest bound state .|k0〉 can be chosen as the fixed state. Any state .|ψ〉 ∈≡∑2j

m=0 cn|kn〉 ∈ D+(k) can be generated by a polynomial of .K+ acting on .|k0〉 as
.|ψ〉 = F(K+)|k0〉, where .K± ≡ K1 ± iK2 and

.F(K+) ≡
2j∑

n=0

cn

√
	(2k)

n!	(2k + n)
(K+)n. (12.30)

Hence, the elementary excitation operator of .su(1, 1) is only the raising operator
.K+.

In the above three examples, the corresponding irreducible representations are
non-degenerate and are technically known as single irreducible representations. In
such cases, the number of the quantum dynamical degrees can be obtained directly
from Eq. (12.17). In more complicated cases, the corresponding quantum dynamical
degrees of freedom will depend sensitively on the structure of the irreducible spaces.
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Since the classical trajectories are defined in a manifold endowed with a
symplectic structure, i.e., a phase space, the classical limit can occur only if such a
structure can emerge from the associated quantum system. In order to study quantum
non-integrability and quantum chaos which relates to classical chaos, one must
construct a geometry which originates from the Hilbert space with the necessary
symplectic structure.

Once the quantum dynamical degrees of freedom are defined, a geometrical
manifold with a symplectic structure for the quantum system can be constructed
for .H. The result is the following: for a quantum system, namely, a structure .(g,H)

with M quantum dynamical degrees of freedom, there exists a 2M-dimensional
symplectic manifold .℘ which is isomorphic to the coset space .G/H , where G is the
covering group of .g and H is the maximal isotropy subgroup of G with respect to
the fixed state .|ψ0〉.

One can explicitly demonstrate why such a manifold is a symplectic manifold.
To this end, we begin with the space .p whose operators are the elementary excitation
operators and their conjugates, .{X†

i , Xi} with .i = 1, · · · ,M . Clearly, .p is a subspace
of .g. The manifold is obtained by the exponential mapping. One may carry out a
unitary exponential mapping for .p,

.

M∑

i=1

(ηiX
†
i − h.c.) → � ≡ exp

M∑

i=1

(ηiX
†
i − h.c.), (12.31)

where .ηi with .i = 1, · · · ,M are complex parameters and .� is a unitary coset
representative of .G/H . Here .G/H is the basic geometrical manifold of .H. This can
be seen from the associated generalized coherent states of G

.|�〉 ≡ �|ψ0〉, (12.32)

which shows that the manifold induced by the coherent states is isomorphic to the
coset space .G/H , while the generalized coherent states offer a continuous basis for
spanning .H.

However, whether .G/H is the desired manifold depends on whether or not it
is a complex space with a symplectic structure. As we have emphasized before,
the complex structure is the fundamental criterion of quantum mechanics, and the
symplectic structure is demanded by the existence of a phase space. First, we shall
show that .G/H is a complex space. We shall confine our attention to the semisimple
Lie groups whose .g satisfy the Cartan canonical decomposition .g = k + p:

.[k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k. (12.33)
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The dimensions for .k and .p are l and m, respectively. When Eq. (12.33) is satisfied,
Eq. (12.31) can be expressed in terms of an .l × m block matrix

. exp

(
0 η

±η† 0

)
=

(√
I ∓ X†X X

∓X†
√

I ∓ X†X

)
, (12.34)

where .η and .X are .l × m matrices determined by

.X = η
sin

√
η†η√

η†η
for compact G, . (12.35a)

X = η
sinh

√
η†η√

η†η
for non-compact G, (12.35b)

and the plus and minus signs correspond to non-compact and compact G, respec-
tively. It has been shown that a group transformation,

.u =
(

A B

±C D

)
∈ G (12.36)

on .G/H is a homomorphic mapping of .G/H onto itself:

.u� : Z′ = AZ + B

CZ + D
,Z ≡ X

√
I ∓ X†X. (12.37)

The above equation shows that .G/H is a complex manifold. A complex manifold
can be understood physically, namely, the wave functions should only depend on
.{z} or .{z∗}, which is analogous to the dependence on coordinates or momenta, but it
cannot depend on both. Hence, .G/H must be a complex space if it is a manifold of
the Hilbert space.

Next it can be shown that .G/H has a symplectic structure. Since it is a complex
space, there exists at least a Hilbert space of functions .L̄2(G/H) on .G/H . Let us
denote these functions as .f1, .f2, .· · · to be any orthonormal basis of .L̄2(G/H). A
kernel .K(z, z∗), called the Bergmann kernel, can be defined as follows:

.K(z, z∗) =
∑

n

fn(z)f
∗
n (z). (12.38)

The metric of .G/H is then defined by

.d2s =
∑

j

gij dzidzj∗ =
∑

j

∂2 ln K(z, z∗)
∂zi∂j∗ dzidzj∗. (12.39)
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According to differential geometry theory, there exists a closed non-degenerate 2-
form .ω on .G/H whose explicit form in the complex local coordinate system is

.ω = ih̄
∑

ij

gij̄ dzi ∧ dzj∗, (12.40)

and the corresponding Poisson bracket is

.{f, g} ≡ 1

ih̄

∑

ij

gij̄

(
∂f

∂zi

∂g

∂zj∗ − ∂g

∂zi

∂f

∂zj∗

)
. (12.41)

In the above equation, f and g are two functions defined on .G/H and .gij g
jk = δik .

Hence, the existence of the symplectic structure is demonstrated. It should be noted
that in the expression of the closed non-degenerate 2-form .ω, we have added a factor
.ih̄. This is because we want to embed .G/H into a phase space with proper physical
dimension.

An explicit construction of the symplectic structure is as follows: By using the
coherent state theory, a simple and useful realization of an orthogonal basis .{fn(z)}
is .fγ (z) = 〈γ ||z〉, where .{|γ 〉} is a basis of .H and .||z〉 is the unnormalized form of
the coherent states .|�〉,

.|�〉 = N−1/2(z, z∗) exp

(
M∑

i=1

ziX
†
i

)
|ψ0〉 ≡ N−1/2(z, z∗)||z〉. (12.42)

It can be shown that the Bergmann kernel is the normalization constant

.K(z, z∗) = N(z, z∗) = 〈z||z〉 = |〈ψ0|�〉|−2. (12.43)

Hence, the geometrical structure of .G/H can be obtained directly from the coherent
states. When .g is a semisimple Lie algebra and satisfies the decomposition of
Eq. (12.33), the explicit function of the Bergmann kernel is given as follows:

.K(z, z∗) = det(I ± Z†Z)±�, (12.44)

where the plus and minus signs correspond to the compact and non-compact group,
respectively, and .�, referred to as the quenching index hereafter, is defined by
.hi |ψ0〉 = ±�|ψ0〉 or 0 for .hi ∈ k. The index .� comes from the mapping .G → G/H

induced by the fixed point of .|ψ0〉. This is the geometrical origin of this topological
index. Also, each .� specifies an irreducible representation of G and represents a
quantum system. In the later sections, we will also see that the quenching index
is indeed the inherent quantity to determine quantum-classical correspondence and
deduce the classical limit.
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By introducing the canonical coordinates .q and .p of .G/H ,

.
1√
2h̄�

(Q + iP ) = X, (12.45)

the Poisson bracket can be transformed into the standard form

.ω =
M∑

i=1

dpi ∧ dqi, {f, g} =
M∑

i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
, (12.46)

which offers the familiar phase space structure. Since .G/H has both a complex
structure and a symplectic structure, it satisfies the demand of quantum mechanics
and allows the development of classical mechanics on it. Hence, one may call the
coherent state space .G/H a quantum phase space.

Still, at this point there is no dynamical information about the quantum-classical
correspondence. The problem of the dynamical correspondence of quantum-
classical systems is discussed in the next section.

12.3 Semi-Quantal Dynamics

Based on the properties of the quantum phase space .G/H , the phase space
representation of a quantum system can be defined if there is an explicit mapping

.{g,H} → {G/H,L2(G/H)}, (12.47)

such that .A → A(p, q) and .|ψ〉 → f (z), where .f (z) is a square-integrable
function defined on .G/H . For a given coset space .G/H , this mapping can uniquely
be realized by its coherent states, for which the procedure is:

(a) Wave functions. It is well known that coherent states are over-complete, namely,

.

∫

G/H

|�〉dμH (z)〈�| = I or
∫

G/H

||z〉dμ(z)〈z|| = I, (12.48)

where .dμ(z, z∗) = K−1(z, z∗)dμH (z, z∗) and .dμH (z, z∗) is the Haar measure
of .G/H . The above equation implies that any quantum state .|ψ〉 ∈ H can be
expanded in terms of the coherent state basis as

.|ψ〉 =
∫

G/H

||z〉f (z∗)dμ(z) or 〈ψ | =
∫

G/H

f (z)dμ(z)〈z||. (12.49)

However, since .||z〉 is over-complete, this expansion is generally not unique.
In other words, for a given .|ψ〉, there exist several square-integrable functions
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.{fk} which satisfy Eq. (12.49). If .f1(z) and .f2(z) are two functions that
satisfy Eq. (12.49) for the same .|ψ〉, their difference must satisfy the following
equation:

.

∫

G/H

K(z, z′∗)(f1(z
′) − f2(z

′))dμ(z′) = 0, (12.50)

where the kernel .K(z, z′∗) = 〈z′||z〉. Evidently, the uniqueness of the expansion
of Eq. (12.49) demands the following identity:

.f (z) =
∫

G/H

K(z, z′∗)f (z′)dμ(z′). (12.51)

In other words, any two functions which represent the same .|ψ〉 must be the
same if Eq. (12.51) is satisfied. One can easily verify that the function .f (z) =
〈ψ ||z〉 or .f (z∗) = 〈z||ψ〉 is the solution of Eq. (12.49) and satisfies Eq. (12.51).
Moreover, it can be shown that all the above solutions .{f (z)} span the square-
integrable Hilbert space .L̄2(G/H) with .{fγ (z)} as the basis,

.(f1, f2) =
∫

G/H

f ∗
1 (z)f2(z)dμ′(z, z∗) < ∞, (12.52)

where

.f (z) =
∑

γ

cγ fγ (z), (12.53)

and .cγ are the expansion coefficients. Also, according to the above equation,
.fγ (z) is in one-to-one correspondence with .|γ 〉, which is the basis of .H.
Hence, .H̄ 2(G/H) is isomorphic with .H, and the quantum dynamics can be
described within the Hilbert space .L̄2(G/H). The normalized wave function is
.fN(z) = 〈ψ |�〉 = K−1/2(z, z∗)f (z). With this representation, the orthonormal
and completeness relations are standard

.

∫

G/H

f ∗
Nγ (z)fNγ (z)dμH (z, z∗) = δγ γ ′ ,

∑

γ

f ∗
Nγ (z)fNγ (z) = 1, (12.54)

where .fNγ (z) = K−1/2(z, z∗)fγ (z).
(b) Operators. There are several ways to define the phase space representation of

an operator on .G/H . We shall begin our discussion with a general description.
Since coherent states are over-complete, any arbitrary operator A acting on .H



12.3 Semi-quantal Dynamics 263

can be expanded as

.A =
∫

||z〉〈z||A||z′〉〈z′||dμ(z)dμ(z′) (12.55)

=
∫

|�〉A(z, z∗; z′, z′∗)〈�′|dμH (z)dμH (z′),

where .A(z, z∗; z′, z′∗) = 〈�|A|�′〉 = N−1/2(z, z∗)〈z||A||z′〉N−1/2(z′, z′∗). The
above equation can be reduced to three special representations, from which one can
study the properties of the operator A in the quantum phase space. Some of these
representations have been widely used in the study of the phase space distributions
and statistical averages. They also form the basis for our investigation of quantum
non-integrability and quantum chaos, as we shall show later.

(I) P -representation. Equation (12.55) can be expressed in a diagonal form as
follows:

.A =
∫

|�〉AP (z, z∗)〈�|dμH (z). (12.56)

This is known as the P -representation of the coherent states. However, this
expansion is not unique and may not even exist in some cases. It is also, in
general, difficult to compute, and thus will not be discussed here.

(II) Q-representation. Every operator A that maps an .H onto itself in terms of the
coherent states .|�〉 is a Q-representation:

.A → A(z, z∗) = 〈�|A|�〉 = K−1(z, z∗)〈z||A||z〉. (12.57)

By definition, the Q-representation of A in .H is unique.
(III) W -representation. This representation, known as the Wigner distribution, is

chronologically the first to describe the quantum distribution function in the
phase space. This representation satisfies the following two conditions:

.A → AW(z, z∗), (12.58)

and

.(A,B) = Tr�(A†B) =
∫

dμH (z)A∗
W(z, z∗)BW(z, z∗), (12.59)

where A and B are arbitrary two operators acting on the Hilbert space .H.

To discuss integrability of a dynamical system in quantum phase space, an
important ingredient is the algebraic structure of the operators in their phase space
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representation. In the following, we shall discuss the algebraic structure in the Q-
representation.

First, we consider the generators .Ti of G. The commutation relations in the Q-
representation will have the same algebraic structure:

.ih̄{Ti , Tj } =
n∑

k=1

Ck
ijTk, (12.60)

where .Ti ≡ 〈�,�|Ti |�,�〉, .Ti ∈ g, and .{·, ·} denotes the Poisson bracket on .G/H .
A global proof of this is as follows: By taking the phase space representation of the
commutation relationship, one obtains

.〈�|[Ti, Tj ]|�〉 =
n∑

k=1

Ck
ijTk. (12.61)

Thus, the proof is reduced to verify the following identity:

.〈�|[Ti, Tj ]|�〉 = ih̄{Ti , Tj }. (12.62)

Mathematically, the phase space representation of T , which is a linear combination
of .Ti , corresponds to a co-adjoint representation of .g

.T = 〈�,�|T |�,�〉 = 〈ψ0|Ad�T |ψ0〉 ∈ g∗, T ∈ },� ∈ G, (12.63)

where .g∗ is a space dual to .g. The gradient of .T , denoted by .gradT , defines a vector
field on .G/H . By the definition of the symplectic structure on .G/H , one obtains

.h̄{T , T ′} = ω(gradT , gradT ′) = 1

i
〈�|[T , T ′]|�〉. (12.64)

Since .T , T ′ ∈ g are linear combinations of the generators .Ti , one completes the
proof.

However, when A is a nonlinear function of .Ti , the quantum fluctuation is
manifested in its phase space representation. In this case, the algebraic structure
between the operators is usually not preserved. Hence, the preservation of the
algebraic structure in the phase space representation can be achieved only through
the condition .� → ∞. Generally, for any two arbitrary operators A and B,

.〈�|[A,B]|�〉 = ih̄{A,B} + O(1/�), (12.65)

where .O(1/�) is the second- and higher-order terms of the quenching index,
.1/�. In summary, the above discussions show that based on the quantum phase
space .G/H , the phase space representation of a quantum system has the following
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explicit form:

.A(Ti) → A(z, z∗) = 〈�|A|�〉, Ti ∈ g, . (12.66a)

|ψ〉 → f (z) = 〈ψ |�〉, |ψ〉 ∈ H, (12.66b)

where .|�〉 is the coherent state of .G/H . This is a realization of the kinematical
quantum-classical correspondence.

We are now ready to formulate quantum mechanics in .G/H and introduce the
idea of semi-quantal description [168]. In order to evaluate quantum dynamics in
.G/H , it is useful to use the path integrals formalism. The standard Feynman path
integral was derived by slicing the time propagator .exp(−iH t) into a product of
operators of the form .[exp(−iH t/N)]N and then inserting the resolution of identity
between the operators. The resolution of identity is usually expressed in terms either
of the continuous coordinate states .|x〉 or the momentum states .|p〉. Hence, when the
system lacks an explicit classical phase space structure, the path integrals formalism
appears to be of limited use. This is precisely where the coherent state formulation
resolves this limitation.

In the above discussions, we have shown that .G/H has a well-defined symplectic
structure and the associated coherent state basis is a continuous basis that satisfies
a resolution of identity. With these two properties, the path integrals formalism can
be established for any quantum system even if it does not have a clear classical
limit. The basic procedure is the same. We shall slice the time interval into N

equal segments .ε = (t2 − t1)/N and then insert the resolution of identity at each
intermediate point between .t2 and .t1. Finally, we let .N → ∞ and obtain

.U(z, z0; t − t0) = lim
N→∞

∫
· · ·

∫ (
N−1∏

i=1

dμ(zi)

)
N∏

i=1

〈zi | exp

(
− iHε

h̄

)
|zi−1〉.

(12.67)

When .N → ∞ and .ε → 0, one obtains up to the first order in .ε

.〈zi | exp

(
− iHε

h̄

)
|zi−1〉 ≈ 〈zi |zi−1〉 exp

(
− iε

h̄

〈zi |H |zi−1〉
〈zi |zi−1〉

)
(12.68)

and

.〈zi |zi−1〉 ≈ exp

(
−〈zi |�zi〉

〈zi |zi〉
)

, ε
〈zi |H |zi−1〉
〈zi |zi−1〉 ≈ ε

〈zi |H |zi〉
〈zi |zi〉 = εH(zi, z

∗
i ).

(12.69)

Thus, the path integral representation of a propagation kernel is

.U(z, z0; t − t0) =
∫ zf

z0

Dμ(z) exp

{
i

h̄
S[z(t), z∗(t)]

}
, (12.70)



266 12 Quantum Chaos

where

.S[z(t), z∗(t)] =
∫ t

t0

dτ

{
〈�|ih̄ ∂

∂τ
|�〉 − H(z(τ ), z∗(τ ))

}
(12.71)

is the effective quantum action and .H(z, z∗) the expectation value of the
Schrödinger operator H evaluated with the time-dependent coherent states.
Furthermore, one finds that

〈�|ih̄ ∂

∂t
|�〉dt = ih̄

2
〈�|∂⃡t |�〉dt = ih̄

2

M∑

i=1

(
∂lnK

∂zi
dzi − ∂lnK

∂zi∗dzi∗

)
, (12.72)

which is a differential 1-form on .G/H , and

.Dμ(p, q) ≡
∏

t0≤τ≤t

dμ[z(τ )] (12.73)

is a functional measure of the path integration. In this regard, the equations for
quantum dynamics can be formulated in the phase space manifold .G/H .

Except for few system, the path integral can only be solved approximately. One
well-known approximation is the stationary phase approximation. The stationary
phase approximation for the present purpose is defined as follows: One may expand
the effective quantum action about its stationary path .z(t) = zc(t),

.S[z(t), z∗(t)] = S0[z(t), z∗(t)] + · · · , (12.74)

where the stationary path is determined by the variation of the action

.δS[z(t), z∗(t)] = δ

∫ t

t0

dτ

{
〈�|ih̄ ∂

∂τ
|�〉 − H(z(τ ), z∗(τ ))

}
= 0. (12.75)

Using Eq. (12.72) and the definition of .gij , one may derive the following classical-
like equations of motion:

.igij

dzi

dt
= ∂H

∂zi∗ ,−gij

dzj∗

dt
= ∂H

∂zi
, (12.76)

as a consequence of the symplectic structure of .G/H . If the canonical form of .G/H

is used, then the equations of motion become the standard Hamilton’s equations

.
dqi

dt
= ∂H(q, p)

∂pi
,
dpi

dt
= −∂H(q, p)

∂qi
. (12.77)
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It is crucial to recognize that although these equations of motion are classical-like,
they should not be misinterpreted as the classical under such an approximation.
Mathematically, a stationary phase approximation is an approximate way to evaluate
an integral in which the integrand is an exponential phase. How good such an
approximation is depends on the details of the phase function. In the original Feyn-
man path integrals formalism, the stationary phase approximation leads to a classical
limit because the phase function is entirely constructed from a classical Hamiltonian
and thus the corresponding equations under stationary phase approximation are the
classical equations of motion.

The present usage of the stationary phase approximation is fundamentally
different because the effective quantum action Eq. (12.71) is not classical but
quantum mechanical in a coherent state basis. This is why it is referred to as an
effective quantum action. In this formulation, the stationary trajectories are not
determined by the classical mechanics since the Hamiltonian is different from the
classical one. Hence, although the resulting equations are classical-like, the concept
of classical mechanics has not been invoked. This means that we can only logically
refer to the dynamics determined by the above equations of motion as a semi-quantal
dynamics, where .H is the semi-quantal Hamiltonian. The prefix “semi” is used
because it is an approximation of quantum mechanics. On the other hand, since
the Hamiltonian is not the classical Hamiltonian, it does not, therefore, describe the
ordinary classical mechanics. In this regard, the intriguing question is: what physical
phenomena does the semi-quantal dynamics describe? We find that since the semi-
quantal Hamiltonian function is derived entirely from quantum mechanics, it differs
from the classical Hamiltonian function by the leading order quantum fluctuation.
The above equations of motion indeed give a description of the phase space structure
of quantal dynamics in which some quantum interference is averaged out by the
variational procedure.

In the above discussions, we introduced a parameter .�, which is called the
quenching index. To be more precise, this index appears in the Bergmann kernel of
the quantum phase space for different quantum systems. This index plays a crucial
role in determining the classical limit of quantum dynamics. Below we shall provide
a proof for this statement.

Since the classical limit is a physical concept, one must consider observables
which have proper dimensions. The generators of G are dimensionless. Hence, a
physical observable with meaningful dimensions should be a function of .h̄Ti . To
this end, one may consider an explicit operator .A(h̄Ti):

.A(h̄T ) =
∑

ij

fij (h̄Ti)(h̄Tj ), (12.78)

where .fij are some coefficients. Most realistic Hamiltonians have such a canonical
form. By using the Baker-Campbell-Hausdorff formula, the transformation of .Ti
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under .G/H is given by

.�−1Ti� =
∑

l

ailKl +
∑

m

bimX†
m +

∑

n

cinXn,� ∈ G/H, (12.79)

where the transformation coefficients .ail , .bim, and .cin are functions of the phase
space coordinates of .G/H and .X

†
m,Xm ∈ p, and .Kl ∈ k for the decomposition

.g = k + p. Hence,

.〈�|Ti |�〉 =
∑

l

ail〈ψ0|Kl |ψ0〉 (12.80)

and

.〈�|TiTj |�〉 = 〈�|Ti |�〉〈�|Tj |�〉 +
∑

lm

(cilbjm)Ck
lm〈ψ0|Kk|ψ0〉), (12.81)

where we have used .Xi |ψ0〉 = 〈ψ0X
†
i = 0. The coefficients .Ck

lm are the structure
constants. For most realistic quantum systems, we have

.〈ψ0|Kl |ψ0〉 = � or 〈ψ0|Kl |ψ0〉 = 0. (12.82)

Thus we can directly verify that

.〈�|A(h̄T )|�〉 =
∑

ij

fijT ′
i (p, q,�h̄)T (p, q,�h̄) + 1

�
F(p, q,�h̄) (12.83)

so that the leading order of quantum fluctuation is

.δA(p, q,�,̄1/�) = 1

�
F(p, q,�h̄). (12.84)

Now, the physical implication is clear. While the coordinates z and .z∗ are dimen-
sionless, p and q have the dimensions of position and momentum, respectively. As
is well known, the reduced Planck constant .h̄ can be regarded as a scale of the
microscopic world. To examine whether a system is microscopic or macroscopic,
one may use the quenching index .� as a guide. Meanwhile, the above equation
shows that the leading order quantum fluctuation is .1/� which will vanish in the
classical limit.

For more general operators, e.g., a n-degree polynomial of .h̄Ti , a similar proof
can be given. It is as follows:

.〈�|An(h̄T )|� = An(Ti (p, q,�h̄))+ 1

�
F1(p, q,�h̄)+· · ·+ 1

�n−1Fn−1(p, q,�h̄).

(12.85)
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Evidently, when .� → ∞, the quantum fluctuation must vanish and thus the
corresponding dynamics becomes classical. This is precisely the meaning of a
classical limit of the quantum theory. As we have emphasized, the classical limit
must rely on a quantity which is inherent in the theory and can measure precisely
the system’s size according to the scale of .h̄. This quantity is now revealed in our
discussion, namely, the quenching index .�. To be more specific, let us compute two
simple cases, SU.(2) and SU.(1, 1). A direct computation yields .� = 2j and 2k, so
that the quantum fluctuations vanish in the large j and k limits for the SU.(2) and
SU.(1, 1) dynamical groups, respectively.

The above discussion clearly shows that in the quantum theory, by the use of
the quenching index, there is a prescription for going over to the classical limit and
for relating the quantum observables to those of the corresponding classical system.
The two special limits of the semi-quantal dynamics indicate that the quenching
index bridges the quantum and classical phenomena. The limiting process of the
quenching index .�, from finite to infinite, allows us to systematically study the
process of “flow” from quantum to classical mechanics.

For instance, as we have shown, for a spin system with a dynamical group SU.(2),
the quenching index is proportional to the spin quantum number. This is consistent
with Lieb’s elegant derivation of the classical limit of quantum spin systems and the
underlying quantum phase space is compact. For the radial motion of a particle in
a central potential with a dynamical group SU.(1, 1), the classical limit corresponds
to the orbital angular momentum .→ ∞. This is the familiar Bohr correspondence
principle and the quantum phase space is non-compact. For a N -boson system with
a dynamical group U.(r), where r is the degree of degeneracy, the quenching index
is simply the total boson number N . The large N classical limit has been widely
used in various branches of theoretical physics. For a N -fermion system with a
dynamical group .U(r), the quenching index is .� = 1. It implies that such a system
has no classical limit. What is perhaps most remarkable is that starting entirely from
geometrical arguments, one can readily show that deep in the geometries of these
systems the lack of classicality is inherent.

12.4 QuantumNon-Integrability

Based on the description of quantum-classical correspondence developed in the last
sections, we can now discuss the meaning of non-integrability for quantum systems,
the core issue of this chapter. As is well known, the study of non-integrability is
the phase in the investigation of classical chaos since integrability is the condition
for the absence of disorder. An integrable system can be solved analytically by an
appropriate transformation operation, e.g., the canonical transformation in classical
phase space. Hence, for such a system, there are suitable local coordinates in terms
of which the solutions of the equations of motion are simple functions. In this
section, we will provide a criterion for the integrability of a quantum system. The
bulk of this section will deal with non-integrable systems, in which the general
properties of non-integrability and dynamical effect of quantum fluctuation on
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nonlinear phenomena will be discussed. Before we embark upon this discussion,
however, we shall first present a brief discussion about systems which are integrable.

The goal of the semi-quantum dynamics discussed in the last section is the
provision of an underlying framework for the deduction of the classical mechanics
from quantum mechanics. In classical Hamiltonian mechanics, the definition of
integrability is that for M independent degrees of freedom, a classical system to
be integrable must have M integrals of motion. In the previous section, we gave
a unique definition of the number of quantum dynamical degrees of freedom: the
necessary number of quantum numbers to specify a basis of the Hilbert space. Thus,
for a quantum system, if there are M non-fully degenerate commuting operators .Ai ,
.i = 1, · · · ,M ,

.[Ai,Aj ] = 0, (12.86)

we can then analytically and completely determine its dynamics. These M commut-
ing operators are called commuting integrals of motion. Correspondingly, there are
M good quantum numbers associated with the eigenvalues of .A1, A2, · · · , AM . The
physical eigenstates .{|λ〉} are labeled by these M good quantum numbers,

.Ai |λ〉 = λi |λ〉, (12.87)

and the energy spectrum is a function of .{λi}. Quantum integrability is defined as
follows:

A quantum system with M independent dynamical degrees of freedom is
integrable if and only if there exist M commuting integrals of motion, i.e., M

good quantum numbers. In addition, the existence of these M commuting non-
fully degenerate observables .Ai must be independent of the Hilbert space; that
is, they must be globally defined. According to Dirac, any set of commuting
observables can be made into a complete set of commuting operators by adding
certain observables to the set. The above definition implies that for an integrable
quantum system, one can always find a complete set of commuting operators
such that the Hamiltonian is diagonal in a basis labeled by the eigenvalues of the
complete set of commuting operators. Conversely, quantum integrability means one
can simultaneously measure the M non-fully degenerate observables in the energy
eigenstates basis.

Obviously, such a definition is akin to its classical counterpart, and one can prove
that quantum integrability defined here is consistent with classical mechanics. The
proof follows directly from the fact that the algebraic structure of observables is
preserved in the classical limit. Thus, one immediately obtains .{Ai,Aj } = 0.

For a classical system which is integrable, the above definition of quantum
integrability can also be realized. This can be seen as follows: For classically
integrable systems, the trajectories must lie in an M-dimensional invariant tori with
action constants .Ii , .i = 1, · · · ,M . These action constants are related to the M good
quantum numbers from the Bohr-Sommerfeld-Wilson quantization conditions, or
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more precisely the Einstein-Brillouin-Keller rule:

.Ii = (ni + αi)h̄, (i = 1, · · · ,M), (12.88)

where .αi is the number of caustic traversed, usually referred to as the Maslov
indices. These M good quantum numbers .{ni, i = 1, · · · ,M} will specify a basis
for the corresponding quantum system. The associated M operators consist of a set
of the commuting non-fully degenerate operators in the complete set of commuting
operators. This proves the consistency of the quantum and classical integrability.
However, if a classical system is non-integrable, the above justification may not be
operative.

Now what are the typical observables for an integrable quantum system with
M degrees of freedom? We have pointed out that for the integrable system, there
is always a basis which is specified by the M good quantum numbers. The basis is
also the set of eigenstates of the system. However, unlike classical trajectories, wave
functions are not measurable. The most simple observables in quantum dynamics
are the energy spectra, and therefore the integrability condition will immediately
lead to what Percival refers to as the “regular” and the “irregular” spectra [171,172].

(i) A regular spectrum corresponds to regimes of the integrable motion in which
all the states can be quantized according to the Einstein-Brillouin-Keller rule. (ii)
An irregular spectrum corresponds to regimes of predominantly chaotic motion
in which Einstein-Brillouin-Keller rule is not applicable. Moreover, Percival [171]
conjectured that the regular energy spectra could have the following properties: (i) A
quantal state may be labeled by the vector quantum number .n = (n1, n2, · · · , nM).
(ii) A state with quantum number n corresponds to those phase space trajectories of
the corresponding classical system which lie in an M-dimensional invariant toroid
with action constants .Ik given by the Bohr-Sommerfeld-Wilson quantum conditions
.Ik = (nk+αk)h̄. (iii) The quantal state must resonate at frequencies close to those of
the corresponding classical motion. Given two quantal states with .nk differing only
by one unity, the Planck relation for their energy differences is .�Ek = ωkh̄, where
.ωk is a fundamental frequency on the corresponding toroid. (iv) A “neighboring
state” to a state .n0 with energy .E0 is a state with the vector quantum number n close
to .n0, with energy difference no more than a small multiple of the maximum .|�Ek|.
(v) Under some weak external perturbations, the state .n0 is much more strongly
coupled to the neighboring states than to other states, with the coupling strength
rapidly decreasing with .|n − n0|.

According to the properties of quantum integrability, points (i) and (ii) are
obviously satisfied by an integrable quantum system. In fact, if the Hamiltonian
operator is not included in the M commuting non-fully degenerate operators, i.e.,
if the Hamiltonian operator is a polynomial of these M commuting non-fully
degenerate operators, then (iii) and (iv) may also be satisfied as a direct consequence
of the correspondence of quantum and classical integrability.

On the other hand, the energy spectra could reveal deeply the behaviors of
quantum integrability and quantum chaos with the random matrix theory [162–164].
But these studies are far beyond the content of coherent state theory explored in
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this book. In this book, we will not discuss the irregular spectra. Interested readers
should consult the review of O. Bohigas and H. A. Weidenmuller [173].

A more interesting problem is as follows: given the explicit definition of quantum
integrability, is there a general algorithm for the determination of the integrability
of a given system? We should point out that even for a classical system, this is
indeed a difficult question, and so far no generic answer has been found. However,
in quantum mechanics, it is found that it is possible to establish such a criterion via
group theory. In fact, with the quantum-classical correspondence developed in the
last section, this long-standing problem for classical mechanics may also be solved.
The answer is obtained from the discovery of a relation between integrability and
the elegant concept of dynamical symmetry [174–176]. To this end, let us briefly
illustrate here the concept of dynamical symmetry and some of its applications in
physics.

As is well known, symmetry is a very profound concept in the development of
modern physics. Within the known interaction mechanics, it is not easy to answer
directly how a dynamical system evolves in time. From the following discussion,
we will see that the global properties of the time evolution of a quantum system are
in fact classified by a “generalized symmetry,” called as dynamical symmetry. For
comparison, we shall first discuss the precise definitions of three kinds of symmetry
in physics: symmetry, hidden symmetry, and dynamical symmetry.

A system is said to have a symmetry, denoted by a group S, continuous or
discrete, if its Hamiltonian H is invariant under the operation of S: .gHg−1 = H ,
.gφ0 = φ0; g ∈ S, where .φ0 is the ground state of the system. A typical example
of the fundamental symmetries that play an essential role in the development of
modern physics is the gauge symmetry. It dictates that interactions in nature. How-
ever, nature does not always have precise symmetries. Quite often, a given system
may deviate somewhat from the exact ones. One such deviation is associated with a
spontaneous symmetry breaking, namely, the hidden symmetry. This symmetry can
be defined as follows:

A system has a hidden symmetry S when its Hamiltonian H is invariant under
the operation of the associated symmetry group S, continuous or discrete, but
the ground state .φ0 is not: .gHg−1 = H , .gφ0 = φ0; .g ∈ U . The associated
invariance guarantees the existence of degenerate ground states which means that
the system can excite a particle without exhausting any additional energy. This
profound concept is indeed one of the most important concepts in the electric-weak
interaction theory. Finally, dynamical symmetry has played an important role in
physics in quantum theory. It is defined as follows:

A quantum system with a dynamical group G has a dynamical symmetry if and
only if the Hamiltonian of the system can be expressed in terms of the Casimir
operators, or invariant operators, of any particular subgroup chain .Gα of G:

.H = f (Cα
i ), (i = 1, · · · , lα), (12.89)

where .α = 1, 2, · · · , γ is the index of a particular subgroup chain, .Cα
i is the ith

Casimir operator of the subgroup .Gα , and .lα represents the rank of the subgroup
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.Gα . Clearly, dynamical symmetry is the least restrictive of these three symmetries
in that neither the Hamiltonian nor the ground state is necessarily invariant under
the transformation of G: .gHg−1 = H , .gφ0 = φ0; .g ∈ G. Indeed, from this point
of view, the first two symmetries are only special cases of dynamical symmetry.

At this point, a few comments about these symmetries seem to be in order. In
the literature, there is quite a bit of discussion to the effect that a system must be
integrable if it contains enough symmetries. We want to emphasize that this is not a
precise statement! In fact, symmetry does not imply integrability at all. In particular,
the symmetries one usually refers to are the fundamental symmetries in the nature,
such as translational, rotational, gauge, and internal quantum symmetries, which
include discrete symmetries such as time reverse symmetry, space reflection, etc.
These symmetries are global and the associated invariances correspond to a small
number of constants of motion.

Dynamical symmetry is a widely used concept in quantum systems. It determines
the detail of dynamical behaviors and has many robust applications in physics. A
fairly complete discussion together with some of the important collections of papers
on this subject can be found in the two volumes edited by A. Bohm, Y. Ne’eman,
and A. O. Barut [177, 178]. Still, it is worth pointing out that the applications of
dynamical symmetry are mostly limited to the purpose of simplifying otherwise
exceedingly or maybe hopelessly complicated quantum mechanical calculations
and for spectroscopic pattern recognition. For this reason, a dynamical symmetry
group is sometimes called spectrum generating algebra. However, the profound
significance of the application of the concept of dynamical symmetry, which will
be the cardinal issue in the study of quantum non-integrability, is that it indeed
provides a classification of the global properties of the dynamics. In the following,
we shall discuss how this concept is related to the study of the system’s dynamics.

The relationship between the integrability of a quantum system and the dynami-
cal symmetry is given precisely as a theorem:

Theorem. A quantum system described by dynamical group G is integrable if it
possesses a dynamical symmetry of G.

According to group theory, there are two classes of subgroup chains for G:
canonical and non-canonical. A subgroup chain is canonical if the set of Casimir
operators in various subgroups of the chain can completely specify states in its
irreducible presentation space. Otherwise, it is non-canonical. The simple proof of
the above theorem is as follows: First, we consider a canonical subgroup chain .Gα

of G. The Casimir operators of G, .{Ci} and all the Casimir operators .{Cα
i } of the

subgroups in the chain .Gα will form a complete set of commuting operators of any
irreducible representation carrier space .H of G, .{Ci, C

α
i } ≡ {Qj, j = 1, · · · ,M}.

When the system has a dynamical symmetry of .Gα , all the operators .Qj are by
definition the commuting integrals of motion: .[H,Qj ] = 0. In this case the system
always has M commuting integrals of motion and thus is integrable.



274 12 Quantum Chaos

For a non-canonical subgroup chain .Gα , the number of Casimir operators
.{Gi} of G and all Casimir operators .{Cα

i } of .Gα is less than the number of the
complete set of commuting operators of any irreducible representation carrier space
of G. However, according to Dirac’s definition of the complete set of commuting
operators, there must exist other commuting operators .{Ai} which will commute
with .{Ci} and .{Cα

i }. The complete set of commuting operators is formed by
combining these operators with the Casimir operator, .{Ci}∪{Cα

i }∪{Ai} ≡ {Qj, j =
1, · · · ,M}. When the system has a dynamical symmetry of .Gα , the operators .Qj

satisfy .[H,Qj ] = 0. Thus, the system is integrable.
Since realistic quantum systems usually have a dynamical Lie group G, the

following generic result is true: suppose G is an l-rank and n-dimensional Lie
group, then as we have shown previously, the dimension of the complete set of
commuting operators of G is independent of the subgroup chain: .d = l + (n− l)/2,
where the l operators are the Casimir operators of G and are fully degenerate
for any given irreducible representation of G. Thus, the number M of the non-
fully degenerate operators in the complete set of commuting operators for a given
irreducible representation of G exceeds .(n− l)/2, i.e., .M ≤ (n− l)/2. The equality
is only true for the canonical irreducible representation of G. If the system has
a dynamical symmetry, there are M commuting integrals of motion. This is a
prescription to determine the integrability of quantum systems. Moreover, by the
embedding algorithm, one can construct all possible dynamical group chains for a
given G. From the above theorem, we see that each subgroup chain corresponds
to an integrable system. This provides a general procedure to construct all possible
integrable systems for any given dynamical system with dynamical group G.

Although a general approach for the construction of various possible integrable
systems exists, this does not mean that all of them can physically be realized.
Usually the number of physically admissible subgroup chains for a given G is
much less than all the possible subgroup chains. For instance, for most realistic
quantum systems, such as atomic and nuclear systems, rotational invariance is
obeyed. Only those dynamical symmetries which terminate with rotational symme-
try are physically realizable. This greatly reduces the number of possible realistic
integrable systems. Thus, the relation of dynamical symmetry and integrability
further provides a way to construct all physically realizable integrable systems.

By the use of straightforward methods, it can be shown that the dynamical
symmetry is also a criterion to determine a system’s integrability in the classical
limit. In the classical limit, the group algebraic structure is defined by the Poisson
brackets. Since the algebraic structure of G in the phase space representation is
preserved, the classical limit of a quantum system, if exists, has the same group
structure. The concept of dynamical symmetry can also be defined for classical
mechanics based on the Poisson brackets. Thus, the theorem about the relation
between integrability and dynamical symmetry is operative in the classical limit
as well. This means that the general procedure of using dynamical symmetry to
construct various possible integrable systems is available for classical mechanics
giving rise to a general algorithm to test the classical systems’ integrability which is
an unsolved long-standing problem in classical mechanics.
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It can further be shown that even in the absence of a classical limit, i.e., in the
semi-quantal description of a quantum system, dynamical symmetry still survives.
Explicitly, we will first show that if the Hamiltonian has a symmetry R, then its
phase space representation has the same symmetry. The reason for this is that if
.RHR−1 = H , then in the phase space representation, .〈�|H |�〉 = 〈�′|H |�′〉, i.e.,
.H(p, q) = H(p′, q ′), where

.|�′〉 = R−1�|ψ0〉 = �′h|ψ0〉 = |�′〉eiϕ(h). (12.90)

Moreover, the phase space representation of an invariant operator .C(Ti) is generally
given by .〈�|C(Ti)|�〉 = s(�)C(〈�|Ti |�〉), where .s(�) is a function of .�. In
the classical limit, .s(�) approaches unity. Thus, if C is an invariant operator,
then its phase space representation is also an invariant observable. Consequently,
symmetries including the dynamical symmetries are preserved in the semi-quantal
description.

In the above discussions, we have presented a precise definition of integrability
for quantum systems and have described their possible generic behaviors of an inte-
grable quantum system. A theorem for determining the integrability of the system
via the concept of dynamical symmetry is proven. It leads to a discussion of the
consistency between quantum and classical integrability. An important conclusion
reached in the above discussions is that non-integrability of a quantum system
implies the breaking of its dynamical symmetry. If the semi-quantal dynamics is
chaotic, the dynamical symmetries of the system must be broken. From this point
on, chaos is strictly defined in the semi-quantal description. The precise relation
between symmetry breaking and non-integrability is as follows:

For a given quantum system with a dynamical Lie group G which is l-rank
and n-dimensional, if the dynamical symmetry is broken such that any of the
M commuting integrals of motion for a nonautonomous system is destroyed, the
system becomes non-integrable.

Here, non-integrability is rigorously defined as follows: a system does not satisfy
Eq. (12.86). Evidently, non-integrable systems include near-integrable systems. In
other words, dynamical symmetry breaking may not be sufficient to alter the
dynamics of an integrable system so that it exhibits chaotic behavior. Hence, an
interesting question is: to what extent must the dynamical symmetry be broken so
that chaos sets in? This is equivalent to a search for a quantum KAM theorem. In
the following, we will examine the relationship between semi-quantal chaos and the
dynamical symmetry breaking of the “parent” quantum system.

When a quantum system possesses a dynamical symmetry, its dynamics is
regular. In the semi-quantal description, this regularity is reflected by a topologically
stable phase space structure. Dynamical symmetry breaking results in the irregular
semi-quantal phase space structure. Thus, our study of the onset of chaos in quantum
systems is based on the semi-quantal dynamics.

According to the stability theory, a stable phase space structure is determined by
the stability of the Hamiltonian function. Explicitly, for a given dynamical system,



276 12 Quantum Chaos

a set of stable points in phase space is given by the following condition:

.xc : ∂H0(x)

∂x

∣∣∣
xc

= 0, det

[
∂2H0(x)

∂xi∂xj

]

xc

> 0, (12.91)

where .x = (p, q) ∈ G/H , .H0(x) is the phase space representation of .H0 which
possesses dynamical symmetry.

Dynamical symmetry breaking implies that the system may deviate from regular-
ity. In other words, there is a perturbation, .H1, which does not possess the dynamical
symmetry of .H0,

.H = H0 + λH1. (12.92)

For certain ranges of .λ, .λH1 may not affect the stable structure of .H0, so that
the system’s dynamics may remain in a phase space structure similar to that of
.H0. In the language of the KAM theorem, this means that the topology of phase
space structure has not been altered. However, outside of this range of .λ, the stable
structure of Eq. (12.92) could change. When this happens, the dynamical symmetry
is sufficiently broken to force the system to undergo a transition. One can evaluate
the critical point of such a transition as follows:

. det

[
∂2H(x)

∂xi∂xj

]

xc

= f (xc, λc) = 0, (12.93)

where .H(x) = H0(x) + λH1(x). When .λ > λc, the dynamical symmetry is
completely broken and the associated stable structure is utterly destroyed. Thus,
the dynamics of the system becomes irregular, and the corresponding semi-quantal
phase space structure must be chaotic.

The above description of stable structure transition is called a structural phase
transition. We postulate that for a non-integrable system, if the dynamical symmetry
breaking is accompanied by a structural phase transition, it must result in the
system’s motion being chaotic.

The above analysis indicates that if a non-integrable system undergoes a struc-
tural phase transition, its Hamiltonian must consist of at least two parts, one with a
specific dynamical symmetry and the other with a different dynamical symmetry,
or no dynamical symmetry at all. Succinctly, if a quantum system possesses a
dynamical group G, its various dynamical symmetries are characterized by the
various subgroup chains .G ⊃ Gγ . In this case, the Hamiltonian is written as

.H = Hα + λHp, (12.94)

where .Hα has the dynamical symmetry .G ⊃ Gα and .Hp has another dynamical
symmetry .Gp = Gα . If .Hp has no dynamical symmetry, then in the parameter
space of .λ > λc, the system will enter into the realm of chaos. If .Hp has another
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dynamical symmetry, then with increasing .λ > λc, we will encounter a second set
of stable points which are determined by

.
∂Hp(x)

∂xi

∣∣∣
x′
c

= 0, det

[
∂2Hp(x)

∂xi∂xj

]

x′
c

> 0. (12.95)

In other words, when .λ > λc, the system is near another stable phase space structure
characterized by the dynamical symmetry of .Hp. In this case, the dynamics of such
a system will have a “generic” regular-chaos-regular structure, in which when .λ is
near .λc, the system is strongly chaotic.

In the above, we discussed the physical criterion of integrability and the origin
of irregularity. These are generic discussions at both the quantum level and the
classical level. We now turn our attention to examine the quantum behavior of a
non-integrable system at the onset of chaos.

Chaos is described by the trajectories in the phase space. Unfortunately due
to the uncertainty principle and the consequent quantum fluctuation in quantum
mechanics, this concept is non-operative. Indeed, it is well known that quantum
fluctuation or quantum correlation is the “wedge” between classical and quantum
mechanics. To understand quantum chaos, one needs to understand how the
dynamical behavior of a non-integrable system deviates from classical mechanics
because of quantum fluctuation. In the semi-quantal description, the concept of
“trajectory” is still intact since the inherent quantum fluctuations are built into
the equations of motion. Therefore the semi-quantal description provides a natural
way to study the effect of quantum fluctuation in regular and irregular phase space
structure.

The difference between the semi-quantal and classical mechanics is the leading
order of the quantum fluctuation .δH contained in the semi-quantal Hamiltonian
function .H, .δH = H−Hc, which is an explicit function of .� and the coordinates of
.G/H . Therefore, the dependence of .δH on .� offers a way to control systematically
the quantum fluctuation, and the classical limit corresponds to .� → ∞, as has been
shown before. On the other hand, the dependence of .δH on dynamical variables
allows one to explore the dynamical effect of quantum fluctuation.

The general Hamiltonian of a non-integrable quantum system is given by
Eq. (12.92). The .H1 in Eq. (12.92) may be regarded as a “perturbative” term
although it may not be small at all when compared to .H0. Also, this term does
not in any way have the same dynamical symmetry as .H0. The crucial point is that
when .H0 is perturbed by such a term, the quantum fluctuation can drive the system
away from its classical phase space structure. If such derivations change the phase
portrait topologically, especially when chaos sets in, the resulting phenomena must
provide a hint to the quantum behavior in chaos.
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For most realistic systems, .H1 is generally a quadratic, or higher-order, function of
generators:

.H1 =
∑

ij

cij (h̄Ti)(h̄Tj ) + · · · . (12.96)

The quantum fluctuation can be calculated explicitly. To simplify the discussion,
let us consider an .H1 that includes only quadratic terms of the generators.
Correspondingly, the semi-quantal and classical Hamiltonian functions are

.H1 = H1cl + δH, (12.97)

where .δH is the leading order of quantum correlations

.δH =
∑

ij

cij h̄
2(〈TiTj 〉 − 〈Ti〉〈Tj 〉) = 1

�
H′(q, p,�h̄). (12.98)

For many realistic systems, the quantum fluctuations may be comparable in
magnitude with their classical limits. For non-integrable systems, these fluctuations
can alter topologically the classical phase space structure. In summary, in this
section, we have presented a detailed discussion of the dynamical behaviors of
non-integrable quantum systems. A non-integrable quantum system must have
dynamical symmetry breaking. However, the dynamical symmetry breaking does
not imply the occurrence of chaotic motion. Indeed, chaos can appear only if the
dynamical symmetry breaking is accompanied by a structural phase transition. The
chaotic behavior of quantum systems is well defined in the semi-quantal description.
Moreover, the semi-quantal description provides explicitly the dynamical effect of
quantum fluctuation in the classical trajectories.

Exercises

12.1. For the SU(2) case, show that the transformations of the SU(2) generators
under the coset representative � are given by

.�−1h̄J0� = (2j h̄ − p2 − q2)J0/j + (q + ip)

√
4j h̄ − p2 − q2J+/4j

+ (q − ip)

√
4j h̄ − p2 − q2J−/4j,

�−1h̄J+� = −(q − ip)

√
4j h̄ − p2 − q2J0/2j

+ (4j h̄ − p2 − q2)J+/4j − (q − ip)2J−/4j,

�−1h̄J−� = (�−1h̄J+�)†.
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12.2. Show that the quantum correlations for the quadratic terms of the SU(2)

generators are

.δ(h̄J0)
2 = 1

4�
(p2 + q2)(4j h̄ − p2 − q2),

δ(h̄J+)2 = − 1

4�
(q − ip)2(4j h̄ − p2 − q2),

δ(h̄J0h̄J+) = 1

4�
(q − ip)(4j h̄ − p2 − q2)

√
4j h̄ − p2 − q2,

δ(h̄J−h̄J+) = 1

4
(4j h̄ − p2q2)2,

where � = 2j .

12.3. For the SU(1, 1) case, show that the transformations of the SU(1, 1) genera-
tors under the coset representative � are given by

.�−1h̄K0� = (2kh̄ + p2 + q2)K0/2k + (q + ip)

√
4kh̄ + p2 + q2K+/4k

+ (q − ip)

√
4kh̄ + p2 + q2K−/4k,

�−1h̄K0� = (q − ip)

√
4kh̄ + p2 + q2K0/2k

+ (4kh̄ + p2 + q2)K+/4k + (q − ip)2K−/4k,

�−1K−� = (�−1K+�)†.

12.4. Show that the quantum correlations for the quadratic terms of the SU(1, 1)

generators are

.δ(h̄K0)
2 = 1

4�
(p2 + q2)(4kh̄ + p2 + q2),

δ(h̄K+)2 = 1

4�
(q − ip)2(4kh̄ + p2 + q2),

δ(h̄K0h̄K+) = 1

4�
(q − ip)

√
4kh̄ + p2 + q2(4kh̄ + p2 + q2),

δ(h̄K−h̄K+) = 1

4�
(4kh̄ + p2 + q2)2,

where � = 2k.
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13.1 Overview 

Nonrelativistic quantum mechanics deals with closed or isolated physical sys-
tems whose dynamics are determined by the Schrödinger equation for a given 
Hamiltonian. However, this is a somewhat artificial scenario. Indeed, any realistic 
system will inevitably interact with its environment. When such interactions are 
not negligible, these systems cannot be treated as closed (or isolated) systems. 
Consequently, the principle of Schrödinger-based quantum mechanics is no longer 
applicable. In the literature, these systems are called open systems. Understanding 
the quantum dynamics of open systems is one of the most challenging topics in 
physics, chemistry, engineering, biology, and even social sciences. In particular, the 
interactions between the system and its environment can induce various dissipation 
and noises (fluctuations) such that the physical systems can exhibit disorders. The 
nature of the emergence of disorders is one of the most difficult problems to solve 
in sciences. 

To understand the quantum dynamics of open systems and the origin of disorders, 
different theories have been proposed and developed in the past century. In practice, 
an open system is defined as the principal system consisting of only a few relevant 
dynamical variables in contact with one or more reservoirs made of a huge (infinite) 
number of degrees of freedom. Of course, the principal system plus its environments 
together form a closed system, which can still be governed by the Schrödinger 
equation in terms of the wave function of the total system [51] or by the von  
Neumann equation in terms of the total density matrix [179]. Additionally, usually 
it is also assumed that the environment is initially in a thermal equilibrium state 
with a given temperature T . In this manner, by definition, it is a mixed state. 
Thus, the Schrödinger picture is again not applicable. It is for this reason that one 
needs to begin with the von Neumann equation in terms of the density matrix to 
address the dynamics of the principal system from the total system. The solution 
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of the reduced density matrix could predict all physical observables of the principal 
system, including the origin of disorders, as one would expect. 

However, in practice, it is well known that it is very complicated and difficult 
to solve the von Neumann equation of the total system for arbitrary interactions 
between the system and the environment. The difficulty stems from the fact that the 
environment contains an infinite number of degrees of freedom and its dynamics is a 
priori unknown. Furthermore, one is only interested in the dynamics of the principal 
system, rather than the dynamics of the environment or the total system. Hence, for 
a long time, the central issue in the investigation of the quantum dynamics of open 
system has been focused on finding the equation of motion for the reduced density 
matrix of the principal system. Such an equation of motion is called the master 
equation. 

The master equation for open quantum systems plays the same role as the 
Newtonian equation for macroscopic objects, the Maxwell equations for electro-
dynamics, and the Schrödinger equation for isolated quantum systems. However, 
from a more fundamental point of view, the Newtonian equation can be derived by 
the Lagrangian formalism or Hamiltonian formalism, the Maxwell equations can 
be derived from the Lagrangian of the quantum electrodynamics (QED), and the 
Schrödinger equation is a nonrelativistic approximation of the Dirac equation which 
can also be derived from the Lagrangian of QED. Thus, all the abovementioned 
fundamental equations of motions can be obtained from the least action based on 
the Lagrangian which can be constructed from the space-time symmetry and gauge 
symmetry. However, to date, neither a fundamental principle has been found to 
determine the master equation nor a fundamental theory has been developed to 
derive the master equation of open quantum systems. Due to this obstacle, finding 
the master equation for open quantum systems becomes the most challenging 
problem. Certainly, if one were to find the general master equation for arbitrary open 
systems, then many fundamental and interesting realistic phenomena, in particular 
the nature of disorders, would become clear. Indeed, under such a scenario, it is not 
inconceivable that physical principles hitherto unknown may also be discovered. 

It is worth underscoring that in as early as the 1960s, the fundamental theory 
for studying non-equilibrium quantum dynamics of open systems was actually 
proposed by Schwinger and Feynman independently. They developed this in terms 
of the Green function technique and path integral approach, respectively [180,181]. 
They started with the Brownian motion in attempting to provide a full quantum 
mechanical description of open systems and meanwhile trying to explore the 
quantum origins of dissipation and fluctuations induced by the environment. Soon 
after the pioneering works of Schwinger and Feynman, the quantum transport 
theory and the non-equilibrium Green function technique of many-body systems 
were developed by Kadanoff, Baym, and also Keldysh, respectively [182–185]. 
Later, the quantum dissipative dynamics and decoherence theory of individual open 
systems were symmetrically explored for the quantum Brownian motion, using the 
Feynman-Vernon influence functional approach [186–190]. In particular, when the 
Brownian particle is modeled as a harmonic oscillator and the environment is also 
modeled by a continuous distribution of infinite numbers of harmonic oscillators,
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the exact master equation for quantum Brownian motion was derived for the first 
time during the period of the 1980s–1990s [186, 191–193]. 

The Feynman-Vernon influence functional approach allows one to exactly 
integrate out all the degrees of freedom in the environment. This was done when 
the environment is modeled by a continuous distribution of infinite numbers of 
harmonic oscillators. The resulting environment effect on the Brownian particle is 
fully given by an influence functional containing the system degrees of freedom only 
[181]. The influence functional shows how the dissipation and diffusion emerge 
in the Brownian motion. Only when the Brownian particle is also modeled as 
a harmonic oscillator, the dynamics of Brownian particle can be exactly solved, 
and the exact master equation can be obtained [186, 191–193]. Since then, such a 
quantum Brownian model becomes the prototype example in one’s understanding 
of the quantum dynamics of open systems [190]. 

Of course, in reality, however, not all open systems can be modeled as a harmonic 
oscillator. Indeed, in the last century, no exact master equation has been found when 
one goes beyond such a quantum Brownian model. Thus, the master equation for the 
quantum dynamics of open systems in general remains a challenge. This challenge 
remains for many fundamental problems in the studies of physics, chemistry, 
engineering, and biology. 

Fortunately, since the 2000s, WMZ realized that to address physically the more 
general essence of the quantum dynamics of open systems, the coherent states path 
integral [17, 194] could be a very useful tool in deriving the exact master equation 
for a large class of open systems [195–201]. To this end, it is especially useful for 
these open systems to couple bilinearly to the environments through the exchanges 
of particles, energies, and information between systems and their environments. 
Such interactions between the system and the environments can be described with 
generalized Fano- and Anderson-type Hamiltonians [200, 202, 203] which have 
wide range of applications in atomic physics, quantum optics, condensed matter 
physics, and particle physics [204–206]. In this case, both the system and the 
environment can either be bosonic [197] or fermionic [195, 196]. Also, it may 
be extendible to spin-like (or anyon) systems [199, 201]. Using this exact master 
equation, we were able to obtain for a large class of open systems the general 
non-Markovian dissipation and fluctuation dynamics of open systems. Also, an 
extended non-equilibrium fluctuation-dissipation theorem is discovered [198, 200]. 
The quantum transportation theory for both the bosonic and fermionic junctions and 
the relation with the non-equilibrium Green function technique are established with 
the same approach [196, 197, 201, 207]. It also shows that the quantum-to-classical 
transition, the foundation of statistical mechanics, and quantum thermodynamics 
can be developed from the quantum dynamics of open systems based on the exact 
master equation [208–210]. 

In this chapter, using the coherent states path integral approach, we will focus 
on the derivation of the exact master equation for a large class of open quantum 
systems. We will also discuss the general non-Markovian dynamics and their 
modern applications, particularly the applications to quantum transportation and 
quantum thermodynamics.
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13.2 Influence Functional in the Coherent-State Representation 

The quantum dynamics of open systems is determined by the reduced density matrix 
.ρS(t) of the total system (system plus environment), which is defined as the partial 
trace of the total density matrix .ρtot(t) over all the environment states, 

.ρS(t) = TrE[ρtot(t)]. (13.1) 

For an arbitrary initial state .ρtot(t0) for the system and the environment, the time 
evolution of .ρtot(t) will obey the von Neumann equation of the quantum mechanics, 

.
d

dt
ρtot(t) = 1

ih̄
[Htot(t), ρtot(t)]. (13.2) 

This is because the system plus the environment together form a closed system. 
If the initial state of the system plus its environment is a pure state, then the 
von Neumann equation can be reduced to the Schrödinger equation. But the 
von Neumann equation is more general because it is also valid to statistically mixed 
states for which the Schrödinger equation is no longer applicable. 

The formal solution of the von Neumann equation can be expressed as 

.ρS(t) = TrE[U(t, t0)ρtot(t0)U
†(t, t0)]. (13.3) 

Here, .U(t, t0) and .U†(t, t0) are, respectively, the forward and backward time 
evolution operators of the total density matrix. Explicitly, 

.U(t, t0) = T→ exp

{
− i

h̄

∫ t

t0

Htot(t
′)dt ′

}
, (13.4) 

where .T→ is the time-ordering operator and .Htot(t) is the system’s total Hamil-
tonian, the environment plus the interaction between them. In most of the cases, 
the trace over all the environmental states in Eqs. (13.1) or (13.3) is the most  
difficult problem for the open quantum systems. In the early 1960s, Feynman and his 
student Vernon developed an approach, which is now known as the Feynman-Vernon 
influence functional method in the literature [181]. In this approach, Feynman and 
Vernon used Feynman’s path integral to completely and exactly trace over the 
environmental state for the system, in particular for the Brownian motion which 
linearly coupled to the position variables of the environment. The results give rise 
to an effective action in terms of the system degrees of freedom only but describe 
all influences of the environment on the system. Such an effective action mixed the 
forward and backward evolution of the system and is called the influence functional. 

After the 2000s, one of us discovered that by using the coherent states path 
integrals formalism, one can non-perturbatively and exactly trace over the environ-
mental states for a large class of open systems coupled to the environment through 
quantum tunneling of particles. This includes the Fano resonance of a discrete
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state in a continuum medium in atomic physics, the spontaneous emissions of two-
level atomic systems coupled to radiative field in quantum optics, the Anderson 
localization model of electron scatterings through lattice potentials in condensed 
matter physics, the quantum transport incorporating quantum tunneling in meso-
scopic physics, the integrated photonic circuits for photonic quantum computers, 
the superconductor-semiconductor hybrid systems for topological phase of matters, 
etc. [195–197, 200, 201]. Of course, it also includes the quantum Brownian motion 
as a special example. 

In this chapter we will take the simplest form of the total Hamiltonian for such a 
class of open systems 

.Htot(t) = HS(t) + HE(t) + HSE(t) (13.5) 

=
∑

i 
εS,i (t)a

† 
i ai +

∑
k

εk(t)b
† 
kbk +

∑
ik

(
Vik(t)a

† 
i bk + V ∗ik(t)b

† 
kai

)
. 

The operators .a†
i , ai (b

†
k, bk) are either bosonic or fermionic creation and annihi-

lation operators of the system (environment) that obey the standard commutation 
or anti-commutation relationships. The single-particle energy spectra of the system 
and the environment, .εS,i and . εk , and the system-environment coupling strength . Vik

could be time-dependently controlled with the rapidly developed nano- and quantum 
technologies today. 

To trace out explicitly the environment states in Eq. (13.3), it is also convenient 
to assume that the system and the environment are initially decoupled, and the 
environment is in a thermal state with initial temperature . T0, 

.ρtot(t0) = ρS(t0) ⊗ ρth
E (t0), ρth

E (t0) = 1

ZE

e−(HE(t0)−μ0NE)/kBT0 . (13.6) 

The initial system state .ρS(t0) can be any arbitrary state. In the initial envi-
ronmental thermal state .ρth

E (t0), .NE = ∑
k b

†
kbk is the environmental particle 

number operator, .μ0 is an initial chemical potential, and .kB is the Boltzmann 
constant. If the environment is made of photons or phonons, then . μ0 = 0. The  
normalization of the environment density matrix defines the partition function 
.ZE = TrE[e−(HE(t0)−μ0NE)/kBT0 ]. In practice, such an initial state can be prepared 
by turning off the coupling between the system and the environment at initial time 
. t0. Specifically, we also denote .εk(t0) = εk . Although the initial total state . ρtot(t0)
is a decoupled state between the system and its environment, the system initial state 
.ρS(t0) can usually be non-Gaussian. It is certainly not an easy task to partially trace 
over the environment state in Eq. (13.3). In order to complete this partial trace, we 
shall use the coherent states path integral approach [17,194] (also see Chap. 4). The 
result can be expressed only as an influence functional in terms of the coherent state 
variables of the system only. It corresponds to an effective action induced by the 
environment through the system-environment interaction that modifies significantly 
the original quantum dynamics of open systems.
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For convenience in the present discussion, here we shall reformulate the coherent 
states path integral here. We use the unnormalized bosonic or fermionic coherent 
states, 

.|ξ〉 =
∏
i

exp(ξia
†
i )|0〉,

∫
dμ(ξ)|ξ〉〈ξ | = I (13.7a) 

and 

.|z〉 =
∏
k

exp(zkb
†
k)|0〉,

∫
dμ(z)|z〉〈z| = I, (13.7b) 

for the system and the environment, respectively. The Haar measures in the 
resolution of the identity, .dμ(ξ) and .dμ(z), are defined in the coherent state 
parameter space .ξ ≡ (ξ1, ξ2, ...), and .z ≡ (zk1 , zk2 , ...), 

.dμ (ξ) =
∏
i

gidξ∗
i dξie

−|ξi |2, dμ (z) =
∏
k

gkdz∗
kdzke

−|zk |2, (13.8) 

where . ξi and .zki
are complex variables for bosons and Grassmann variables for 

fermions with .gi(gk) = 1/2πi and 1, respectively. 
In the coherent state representation, the reduced density matrix of Eq. (13.3) with 

the initial decoupled state Eq. (13.6) can be expressed as 

. 〈ξf |ρS(t)|ξ ′
f 〉 =

∫
dμ(zf )〈ξf zf |U(t, t0)[ρS(t0) ⊗ ρth

E ]U†(t, t0)|±zf ξ ′
f 〉.

(13.9) 

The partial trace over the environmental state in the coherent state representation 
is given by .TrE[· · · ] = ∫

dμ(zf )〈zf | · · · |±zf 〉 where the minus sign corresponds 
to the trace over fermionic coherent states. Inserting the resolutions of the identity 
between the products of the time evolution operator and the initial density matrix 
operator, we arrive at 

.〈ξf |ρS(t)|ξ ′
f 〉 =

∫
dμ(zf )dμ(ξ0)dμ(z0)dμ(ξ ′

0)dμ(z′
0)〈ξ0|ρS(t0)|ξ ′

0〉 (13.10) 

× 〈ξf zf |U(t,  t0)|z0ξ0〉〈z0|ρth 
E |z′

0〉〈ξ ′
0z

′
0|U†(t, t0)|±zf ξ

′
f 〉. 

Here .〈ξf zf |U(t, t0)|z0ξ0〉 is the forward time evolution matrix element and 
.〈ξ ′

0z
′
0|U†(t, t0)|±zf ξ ′

f 〉 the backward evolution matrix element with respect to the 

initial decoupled state .〈ξ0z0|ρtot(t0)|z′
0ξ

′
0〉 = 〈ξ0|ρS(t0)|ξ ′

0〉〈z0|ρth
E |z′

0〉.
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In terms of the coherent states path integral discussed in Chap. 4, the forward time 
evolution matrix element can now be expressed as 

.〈ξf zf |U(t, t0)|z0ξ0〉 = exp
{
�G(ξ) + �G(z)

}
(13.11) 

×
∫
D[ξ ]D[z] exp

{
i 
h̄

∫ t 

t0 

dτ
(
LS[ξ ] + LE[z] − HSE[ξ , z])

}
. 

It is worth noting that the coherent states path integrals are very different from 
Feynman’s conventional path integrals formalism. They are defined in terms of the 
complex or Grassmann variables so that the path integral end-point fixed values 
are given by the both sides of the path integrals .zk(t0) = zk0, .ξi(0) = ξi0 and 
.z∗

k(t) = z∗
kf , .ξ∗

i (t) = ξif . The first exponential function in Eq. (13.11) is a boundary 
factor associated with the end-point values of the path integrals in the coherent state 
representation 

.�G(ξ) = 1

2

∑
i

[
ξ∗
if ξi(t) + ξ∗

i (t0)ξi0
]
, . (13.12a)

�G(z) = 
1 

2

∑
k

[
z∗
kf zk(t) + z∗

k(t0)zk0
]
, (13.12b) 

where .(ξ∗
i (t0), z

∗
k(t0)) and .(ξi(t), zk(t)) are not the complex conjugate pairs of the 

fixed end points .(ξi0, zk0) and .(ξif , z∗
kf ). They are independent and are determined 

by solving explicitly the path integral, as we shall see later. This manifests the 
difference from the conventional Feynman’s path integrals in terms of the position 
representation in quantum mechanics. The system and the environment Lagrangians 
and the interaction Hamiltonian between the system and the environment in 
Eq. (13.11) are given by  

.LS[ξ ] = ih̄

2

∑
i

[
ξ∗
i (τ )ξ̇i(τ ) − ξ̇∗

i (τ )ξi(τ )
]−∑

i

εS,i (τ )ξ∗
i (τ )ξi(τ ), . (13.13a) 

LE[ξ ] =  
i ̄h 
2

∑
k

[
z∗
k(τ )żk(τ ) − ż∗

k(τ )zk(τ )
]−∑

k

εk(τ )z∗
k(τ )zk(τ ), . (13.13b) 

HSE[ξ , z] =
∑
ik

[
Vik(τ )ξ∗

i (τ )zk(τ ) + V ∗ik(τ )z∗
k(τ )ξi(τ )

]
. (13.13c) 

The path integral measures over the coherent state parameter space are defined by 

.D[ξ ] =
∏

i,t0<τ<t

gidξ∗
i (τ )dξi(τ ), . (13.14a) 

D[z] =
∏

k,t0<τ<t 
gkdz∗

k(τ )dzk(τ ). (13.14b)
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Fig. 13.1 (Color online) A schematic plot of the forward and backward evolutions of the total 
density matrix. The black and green lines with arrows represent the evolution paths of the 
environment and the system, respectively 

The backward evolution matrix element is the complex conjugate of the forward 
evolution matrix element, 

. 〈ξ ′
0z

′
0|U†(t, t0)|zf ξ ′

f 〉 = exp

{
�∗

G(ξ ′) + �∗
G(z′)

]}
(13.15)

×
∫
D[ξ ′]D[z′] exp

{
i

h̄

∫ t0

t

dτ
(
L∗

S[ξ ′] + L∗
E[z′] − H∗

SE[ξ ′, z′])
}
,

with the end-point boundary conditions: .z′
k(t) = z′

kf , .ξ ′
i (t) = ξ ′

if , and .z′∗
k (t0) = z′∗

k0, 

.ξ ′∗
i (t0) = ξ ′

i0. Equation (13.13) shows that .L∗
S[ξ ′] = LS[ξ ′], .L∗

E[z′] = LE[z′], and 
.H∗

SE[ξ ′, z′] = HSE[ξ ′, z′], i.e., they are all real functions, but the corresponding 
boundary conditions are exchanged as the result of the backward time evolution. 
The evolutions paths of Eq. (13.15) are depicted by Fig. 13.1. 

Thus, the reduced density matrix of Eq. (13.10) can simply be written in terms of 
the coherent states path integrals as follows: 

. 〈ξf |ρS(t)|ξ ′
f 〉 =

∫
dμ(ξ0)dμ(ξ ′

0)〈ξ0|ρS(t0)|ξ ′
0〉J

(
ξf , ξ ′

f , t; ξ0, ξ
′
0, t0

)
,

(13.16) 

where .J (ξf , ξ ′
f , t; ξ0, ξ

′
0, t0) is defined as the propagating function of the reduced 

density matrix in the coherent state representation. It is explicitly given by 

.J (ξf , ξ ′
f , t; ξ0, ξ

′
0, t0) = exp

{
�G(ξ) + �∗

G(ξ ′)
}

(13.17) 

×
∫
D[ξ ]D[ξ ′] exp

{
i 
h̄

∫ t 

t0 

dτ
(
LS[ξ ] − L∗

S[ξ ′])
}
F[ξ , ξ ′]. 

Here .F[ξ , ξ ′] is the influence functional in the coherent state representation. It 
contains all the influence of the environment dynamics on the system after one
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traced over all the environmental states. Explicitly, 

.F[ξ , ξ ′] =
∫

dμ(zf )dμ(z0)dμ(z′
0)〈z0|ρth

E |z′
0〉 exp

{
�G(z) + �∗

G(z′)
}

(13.18) 

×
∫
D[z]D[z′] exp

{
i 
h̄

∫ t 

t0 

dτ
(
LES[ξ , z]−L∗

ES[ξ ′, z′])
}
, 

and 

.LES[ξ , z] = LE[z] − HSE[ξ , z] (13.19) 

=
∑

k

{
ih̄ 
2

[
z∗
k(τ )żk(τ ) − ż∗

k(τ )zk(τ )
] − εk(τ )z∗

k(τ )zk(τ )

}

−
∑
ik

[
Vik(τ )ξ∗

i (τ )zk(τ ) + V ∗ik(τ )z∗
k(τ )ξi(τ )

]
. 

is the generalized Lagrangian of the environment plus the system-environment 
interaction in the coherent states path integrals. 

The trace over the environmental degrees of freedom can be computed with 
the coherent states path integrals. Because the generalized Lagrangian (13.19) is  
a quadratic function of environmental variables . zk and . z∗

k , the path integrals in 
Eq. (13.18) can be exactly calculated using either the Gaussian integral or the 
stationary path approximation. The latter can also produce the exact solution when 
the Lagrangian is only a quadratic function of path integral variables. In this case, 
only the stationary paths have the contribution to the path integrals, i.e., 

.

∫
D[z] exp

{
i

h̄

∫ t

t0

dτLES[ξ , z]
}

= exp

{
i

h̄

∫ t

t0

dτLSP
ES(ξ , z)

}
, (13.20) 

where .LSP
ES(ξ , z) denotes the Lagrangian of the stationary paths only. The stationary 

paths are determined by the last action principle, i.e., the variation of the action 
functional with respect to the environment variables is zero: 

.δSES[ξ , z] = δ

∫ t

t0

dτLES[ξ , z] = 0. (13.21) 

It results in the classical-like Euler-Lagrangian equations: 

.
d

dτ

∂LES

∂żk

− ∂LES

∂zk

= 0,
d

dτ

∂LES

∂ż∗
k

− ∂LES

∂z∗
k

= 0. (13.22)
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From the above equations, one can find the equations of motion for the stationary 
paths of every environmental mode: 

.
d

dτ
zk(τ ) + i

h̄
εk(τ )zk(τ ) = − i

h̄

∑
i

V ∗
ik(τ )ξi(τ ), . (13.23a) 

d 
dτ 

z∗
k(τ ) − 

i 
h̄

εk(τ )z∗
k(τ ) = 

i 
h̄

∑
i 

Vik(τ )ξ∗
i (τ ), (13.23b) 

subjected to the boundary condition .zk(t0) = zk0 and .z∗
k(t) = zkf . As it was  

shown, .zk(τ ) and .z∗
k(τ ) obey the different boundary condition. That is, the stationary 

paths .zk(τ ) and .z∗
k(τ ) (.t0 ≤ τ ≤ t) are two independent dynamical variables that 

are not complex conjugate to each other. This is indeed the general property of 
quantum mechanics presented in terms of the complex space, as a manifestation of 
quantum mechanics complex structure. Ignoring such a complex structure breaks the 
fundamental principle of quantum mechanics, namely, the unitarity. Furthermore, 
Eq. (13.23) can be solved analytically because it is linear. The result is 

.zk(τ ) = uk0(τ, t0)zk0 − i

h̄

∑
i

∫ τ

t0

dτ ′uk0(τ, τ
′)V ∗

ik(τ
′)ξi(τ ), . (13.24a) 

z∗
k(τ ) = uk0(t, τ)z∗

kf − 
i 
h̄

∑
i

∫ t 

τ 
dτ ′Vik(τ

′)ξ∗
i (τ

′)uk0(τ
′, τ ), (13.24b) 

where 

.uk0(t, t
′) = exp

{
− i

h̄

∫ t

t ′
dτεk(τ )

}
(13.25) 

is the free particle propagating function in the environment. 
Similarly, the path integrals of the environment part in the backward time 

evolution are only contributed by the backward stationary paths as well: 

.

∫
D[z′] exp

{
− i

h̄

∫ t

t0

dτL∗
ES[ξ ′, z′]

}
(13.26) 

= N (t) exp

{
− i 

h̄

∫ t 

t0 

dτLSP 
ES(ξ

′, z′)
}
, 

where .N (t) is a pure time-dependent factor arising from the quantum fluctu-
ations around the stationary paths. Because the generalized Lagrangian is real, 
.L∗

ES[ξ ′, z′] = LES[ξ ′, z′], and it has the same form as that of the forward evolution,
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the backward stationary paths obey the same equations of the motion: 

.
d

dτ
z′
k(τ ) + i

h̄
εk(τ )z′

k(τ ) = − i

h̄

∑
i

V ∗
ik(τ )ξ ′

i (τ ), . (13.27a) 

d 
dτ 

z′∗
k (τ ) − 

i 
h̄

εk(τ )z′∗
k (τ ) = 

i 
h̄

∑
i 

Vik(τ )ξ ′∗
i (τ ). (13.27b) 

But they are subjected to the different boundary conditions .z′
k(t) = ±zkf and 

.z′∗
k (t0) = z′∗

k0. The minus sign in the boundary condition comes from the trace with 
the fermionic coherent state integral; see Eq. (13.9). It is interesting to see that the 
backward stationary paths are the complex conjugate to the forward stationary paths: 

.z′
k(τ ) = ±uk0(τ, t)zkf + i

h̄

∫ t

τ

dτ ′ ∑
i

uk0(τ, τ
′)V ∗

ik(τ )ξ ′
i (τ

′), . (13.28a) 

z′∗
k (τ ) = uk0(t0, τ )z′∗

k0 + 
i 
h̄

∫ τ 

t0 

dτ ′ ∑
i 

Vik(τ
′)ξ ′∗

i (τ ′)uk0(τ
′, τ ). (13.28b) 

Using the equations of motion (13.23) and (13.27), the influence functional of 
Eq. (13.18) is reduced to 

.F[ξ , ξ ′] = N (t)

∫
dμ(zf )dμ(z0)dμ(z′

0)〈z0|ρth
E |z′

0〉e{�SP
G (z)+�∗SP

G (z′)} (13.29) 

× exp

{
i 

2h̄

∫ t 

t0 

dτ
(
HSP 

ES(ξ , z)−HSP 
ES(ξ

′, z′)
)}

. 

where .z, z′ are the solution of the forward and backward stationary paths given by 
Eqs. (13.24) and (13.28). 

Note that the matrix element of the initial environment state in the coherent state 
representation is 

.〈z0|ρth
E |z′

0〉 = 1

ZE

exp
{ ∑

k

z∗
k0e

−(εk−μ0nk)/kBT0z′
k0

}
. (13.30) 

The partition function . ZE for noninteracting bosonic or fermionic environment is 
given by 

.ZE =
∏
k

(
1 ∓ exp

{−(εk−μ0)/kBT0
})∓

. (13.31) 

The left integrals over the end-point environmental variables in Eq. (13.29) are . zk0, 
. z′

k0, . zkf , and their complex conjugates, which can be easily calculated with the
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Gaussian integrals 

.

∏
k

∫
gidz∗

kdzk exp
{−z†Az + z†α + α†z

} = (detA)∓eα†A−1α. (13.32) 

Here we have used the matrix notation: .z†Az ≡ ∑
kk′ z∗

kAkk′zk′ , .z†α ≡ ∑
k z∗

kαk . 
The resulting influence functional can be expressed in terms of the system variables 
only: 

.F[ξ , ξ ′] = N (t) exp

{
i

h̄

∫ t

t0

dτLIF[ξ , ξ ′]
}

(13.33) 

where .LIF[ξ , ξ ′] is the environment-induced influence Lagrangian acting on the 
system: 

.LIF[ξ , ξ ′] =ih̄
∑
ij

{∫ τ

t0

dτ ′(ξ∗
i (τ ) ∓ ξ ′∗

i (τ )
)
gij (τ, τ

′)ξj (τ
′) (13.34) 

∓
∫ t 

τ 
dτ ′ξ ′∗

i (τ )gj i(τ, τ ′)
(
ξj (τ

′) ∓ ξ ′
j (τ

′)
)

±
∫ t 

t0 

dτ ′(ξ∗
i (τ ) ∓ ξ ′∗

i (τ )
)
g̃ij (τ, τ ′)

(
ξj (τ

′) ∓ ξ ′
j (τ

′)
)]}

. 

In this solution, the up and down signs of . ∓ correspond to the system being 
bosonic and fermionic, respectively. The first two terms in Eq. (13.34) come from 
the system-environment interaction through the forward and backward evolution 
of the environment dynamics, respectively. The last term is the mixed effects of 
forward and backward evolution through the initial environment state, also due to 
the system-environment interaction. The system-environment two-time correlation 
functions .gij (τ, τ

′) and .̃gij (τ, τ
′) characterize the non-Markovian memory effect, 

i.e., the back-reactions between the system and the environment: 

.gij (τ, τ
′) =

( 1

h̄

)2 ∑
k

Vik(τ )uk0(τ, τ
′)V ∗

jk(τ
′), . (13.35a)

g̃ij (τ, τ ′) =
( 1 

h̄

)2 ∑
k 

Vik(τ )uk0(τ, τ ′)V ∗jk(τ
′)〈b† 

kbk〉, (13.35b) 

and 

.〈b†
kbk〉 = TrE[b†

kbkρ
th
E (t0)] = 1

e(εk−μ0)/kBT0 ∓ 1
= f (εk, T0) (13.36)
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is the initial mode k particle occupation, given by the Bose-Einstein or the 
Fermi-Dirac distributions, in the environment at initial temperature . T0 with initial 
chemical potential . μ0. The influence Lagrangian Eq. (13.34) encompasses all the 
environmental effects on the system dynamics, including the renormalization of 
the system Hamiltonian, the dissipation, and fluctuation dynamics induced by the 
environment. 

13.3 Exact Master Equation of the Reduced Density Matrix 

The environment-induced influence Lagrangian significantly modifies the dynamics 
of the system. To find such significant changes of the system dynamics, we shall 
rewrite the propagating function of Eq. (13.17) in terms of an effective system 
Lagrangian: 

.J (ξf , ξ ′
f , t; ξ , ξ ′

0, t0) =N (t) exp
{
�G(ξ) + �∗

G(ξ ′)
}

(13.37) 

×
∫
D[ξ ]D[ξ ′] exp

{ i 
h̄

∫ t 

t0 

dτLeff[ξ , ξ ′]
}
. 

The effective system Lagrangian .Leff[ξ , ξ ′] mixes the forward and backward system 
Lagrangian through the interaction with the environment, and it is given by 

.Leff[ξ , ξ ′] = LS[ξ ] − L∗
S[ξ ′] + LIF[ξ , ξ ′] (13.38) 

=
∑

i

{
ih̄ 
2

[
ξ∗
i (τ )ξ̇i(τ ) − ξ̇∗

i (τ )ξi(τ )
]−εS,i (τ )ξ∗

i (τ )ξi(τ )

}

−
∑

i

{
ih̄ 
2

[
ξ ′∗
i (τ )ξ̇ ′

i (τ ) − ξ̇ ′∗
i (τ )ξ ′

i (τ )
]−εS,i (τ )ξ ′∗

i (τ )ξ ′
i (τ )

}

+ ih̄
∑
ij

{∫ τ 

t0 

dτ ′(ξ∗
i (τ ) ∓ ξ ′∗

i (τ )
)
gij (τ, τ ′)ξj (τ

′) 

∓
∫ t 

τ 
dτ ′ξ ′∗

i (τ )gj i(τ, τ ′)
(
ξj (τ

′) ∓ ξ ′
j (τ

′)
)

±
∫ t 

t0 

dτ ′(ξ∗
i (τ ) ∓ ξ ′∗

i (τ )
)
g̃ij (τ, τ ′)

(
ξj (τ

′) ∓ ξ ′
j (τ

′)
)]}

. 

The last three terms are the environment-induced influence Lagrangian that would 
take into account all the back-reactions between the system and the environment. It 
results in quantum memory on its historical dynamical evolution. 

To explore the memory dynamics of the system under the influence of the 
environment, we need to compute explicitly the path integrals in the propagating
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function of Eq. (13.37) to determine the time evolution of the reduced density 
matrix Eq. (13.16). Again, because the effective Lagrangian (13.38) is a quadratic 
function of the system variables, we can solve exactly the path integrals with the 
stationary path method. Similar to solving the stationary paths of all the modes of 
the environment, the stationary paths of the particles in the i-state of the system are 
determined by the classical-like Euler-Lagrangian equations of motion. This leads 
to the following equations of motion for the stationary paths: 

.
d

dτ
ξi(τ ) + i

h̄
εS,i (τ )ξi(τ ) +

∑
j

∫ τ

t0

dτ ′gij (τ, τ
′)ξj (τ

′) (13.39a) 

= ∓
∑
j

∫ t 

t0 

dτ ′g̃ij (τ, τ ′)[ξj (τ
′) ∓ ξ ′

j (τ )], 

.
d

dτ
ξ ′
i (τ ) + i

h̄
εS,i (τ )ξ ′

i (τ ) ±
∑
j

∫ τ

t0

dτ ′gij (τ, τ
′)ξj (τ

′) . (13.39b) 

= ∓
∑
j

∫ t 

τ 
dτ ′gij (τ, τ ′)[ξj (τ

′) ∓ ξ ′
j (τ

′)] 

−
∑
j

∫ t 

t0 

dτ ′g̃ij (τ, τ ′)[ξj (τ
′) ∓ ξ ′

j (τ )], 

d 
dτ 

ξ∗
i (τ ) − 

i 
h̄ 

εS,i (τ )ξ∗
i (τ ) −

∑
j

∫ τ 

t0 

dτ ′g∗
ij (τ, τ

′)[ξ∗
j (τ

′) ∓ ξ ′∗
j (τ )] . (13.39c) 

= ∓
∑
j

∫ t 

τ 
dτ ′g∗

ij (τ, τ
′)ξ ′∗

j (τ
′) 

±
∑
j

∫ t 

t0 

dτ ′g̃∗
ij (τ, τ

′)[ξ∗
j (τ

′) ∓ ξ ′∗ 
j (τ

′)], 

d 
dτ 

ξ ′∗
i (τ ) − 

i 
h̄ 

εS,i (τ )ξ ′∗
i (τ ) ∓

∑
j

∫ t 

τ 
dτ ′g∗

ij (τ, τ
′)ξ ′∗

j (τ
′) (13.39d) 

=
∑
j

∫ t 

t0 

dτ ′g̃∗
ij (τ, τ

′)[ξ∗
j (τ

′) ∓ ξ ′∗
j (τ

′)], 

subjected to the boundary conditions .ξi(0) = ξi0, .ξ ′
i (t) = ξ ′

if , .ξ∗
i (t) = ξ∗

if , and 
.ξ ′∗
i (t0) = ξ ′∗

i0 , where .t0 ≤ τ ≤ t . Note that the above equations of motion give 
rise to a number of interesting properties for open system dynamics. First of all, 
. ξi and . ξ∗

i obey very different equations of motion. They are no longer complex 
conjugate to each other, which breaks the complex structure of quantum mechanics.
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This indicates that the dynamics of open systems no longer follow the unitary 
evolution of quantum mechanics. The breakdown of the unitary evolution or the 
complex structure of quantum mechanics arises from the mixture of the forward and 
backward propagating paths through the matter, energy, and information exchanges 
between the system and the environment. One must note that the above equations 
of motion also mix the past and future events together, which will give rise to the 
breakdown of causality. This is precisely the origin of the entanglement between the 
system and the environment which cannot happen in the classical mechanics. 

Equations (13.39) are not directly solvable because of the lack of the causality, 
namely, the path .ξi(τ ) at time . τ depends on both the past and the further states. To 
find the solution of the above equations of motion for the stationary paths, one may 
introduce the new variables .χi(τ ) = ξi(τ )∓ ξ ′

i (τ ). Then Eq. (13.39) can be reduced 
to 

.
d

dτ
χi(τ ) + i

h̄
εS,i (τ )χi(τ ) +

∫ τ

t0

dτ1

∑
j

gij (τ, τ1)χj (τ1) = 0, . (13.40a) 

d 
dτ 

χ∗
i (τ ) − 

i 
h̄ 

εS,i (τ )χ∗
i (τ ) −

∫ t 

τ 
dτ1

∑
j 

g∗
ij (τ, τ1)χ

∗
j (τ1) = 0. (13.40b) 

These equations are apparently solvable because there is no obvious violation of 
causality. However, there is a new difficulty that now appears, namely, . χi(τ ) =
ξi(τ ) − ξ ′

i (τ ) has no unique boundary conditions because .ξi(τ ) and .ξ ′
i (τ ) obey the 

different boundary conditions: .ξi(t0) = ξi0 and .ξ ′
i (t) = ξ ′

if . In other words, the 
breakdown of causality in quantum mechanics is now manifested in the boundary 
conditions of the path integrals in terms of the classical-like stationary paths. To 
solve this problem, we can further factorize the boundary values of the stationary 
paths by introducing the following transformation: 

.ξi(τ ) ∓ ξ ′
i (τ ) =

∑
j

uij (τ, t)[ξj (t) ∓ ξ ′
f ], . (13.41a) 

ξi(τ ) =
∑
j 

uij (τ, t0)ξj0 ±
∑
j 

vij (τ, t)[ξj (t) ∓ ξ ′
jf ] (13.41b) 

and a similar transformation for their conjugate variables (by the replacement of 
.ξi → ξ ′∗

i with .ξ ′
i → ξ∗

i for the boundary conditions .ξ ′∗
i (t0) = ξ ′∗

i0 and .ξ∗
i (t) = ξ∗

if ). 
Here the bold notation .u(t, t0) and .v(t, t) represent .N × N non-equilibrium Green 
function matrices, where N is the total number of energy levels in the system. Then 
the stationary path equations of motion (13.39) are transformed to the following
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equations of motion for the non-equilibrium Green functions .uij (τ, t) and .vij (τ, t): 

.
d

dt
uij (τ, t0) + i

h̄
εS,i (τ )uij (τ, t0) +

∑
j ′

∫ τ

t0

dτ ′gij ′(τ, τ ′)uj ′j (τ
′, t0) = 0.. 

(13.42a) 

d 
dt 

vij (τ, t) + 
i 
h̄ 

εS,i (τ )vij (τ, t) +
∑
j ′

∫ τ 

t0 

dτ ′gij ′(τ, τ ′)vj ′j (τ
′, t)  

(13.42b) 

= +
∑
j ′

∫ t 

t0 

dτ ′g̃ij ′(τ, τ ′)uj ′j (τ
′, t).  

subjected to the unique boundary conditions: .uij (t0, t0) = δij and .vij (t0, t) = 0. 
The boundary condition .vij (t0, t) = 0 immediately leads to the following general 
solution of Eq. (13.42b): 

.vij (τ, t) =
∫ τ

t0

dt1

∫ t

t0

dt2
∑
j ′j ′′

uij ′(τ, t1)̃gj ′j ′′(t1, t2)u
∗
jj ′′(t, t2). (13.43) 

This solution is the generalized non-equilibrium fluctuation-dissipation relation in 
the time domain [196–198]. As we will show later, these two non-equilibrium Green 
functions fully capture the dissipation and fluctuation dynamics of open systems. 

With the equations of motion (13.39) for the stationary paths, it is easy to find 
that the effective Lagrangian vanishes for the stationary paths: .LSP

eff[ξ , ξ ′] = 0. Then 
the propagating function (13.37) is simply contributed by the boundary terms in the 
coherent states path integrals: 

. J (ξf , ξ ′
f , t; ξ , ξ ′

0, t0) = A(t) exp
{
�G(ξ) + �∗

G(ξ ′)
}

(13.44)

= A(t) exp
{1

2

∑
i

[
ξ∗
if ξi(t) + ξ∗

i (t0)ξi0 + ξ ′∗
i0ξ ′

i (t0) + ξ ′∗
i (t)ξ ′

if

]}

= A(t) exp
{1

2

[
ξ

†
f ξ(t) + ξ†(t0)ξ0 + ξ

′†
0 ξ ′(t0) + ξ ′†(t)ξ ′

f

]}
,

where .A(t) counts the fluctuations around the stationary paths from the path 
integrals of Eq. (13.37), which can be determined later by the normalization 
condition of the propagating function. Using the transformation Eq. (13.41), we can 
express the end points of the path integrals: .ξi(t), .ξ∗

i (t0) and .ξ ′
i (t0), . ξ

′∗
i (t), in terms  

of the non-equilibrium functions .uij (t, t0) and .vij (t, t) and the boundary conditions
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of the fixed end points in the path integrals, 

.ξ(t) = [1 ± v(t, t)]−1[u(t, t0)ξ0 + v(t, t)ξ ′
f ]. (13.45a) 

ξ†(t0) = ξ† 
f [1 ± v(t, t)]−1u(t, t0). (13.45b) 

± ξ ′† 
0 [1 − u†(t, t0)[1 ± v(t, t)]−1u(t, t0)]. 

ξ ′(t0) = u†(t, t0)[1 ± v(t, t)]−1ξ ′
f . (13.45c) 

± [1 − u†(t, t0)[1 ± v(t, t)]−1u(t, t0)]ξ0. 

ξ ′†(t) = [ξ ′† 
0 u

†(t, t0) + ξ† 
f v(t, t)][1 ± v(t, t)]−1. (13.45d) 

Thus, the propagating function is analytically solved 

.J (ξf , ξ ′
f , t; ξ , ξ ′

0, t0) = A(t) exp
{
ξ

†
f K1(t, t0)ξ0 + ξ ′†

0K
†
1(t, t0)ξ

′
f (13.46) 

± ξ ′
0 

† 
K3(t, t0)ξ0 + ξ† 

f K2(t)ξ
′
f

}
, 

where 

.K1(t, t0) = [1 ± v(t, t)]−1u(t, t0), . (13.47a) 

K2(t) = v(t, t)/[1 ± v(t, t)], . (13.47b) 

K3(t, t0) = 1 − u†(t, t0)[1 ± v(t, t)]−1u(t, t0). (13.47c) 

The up and down signs of . ± correspond to the system being bosonic or fermionic. 
The functions .u(t, t0) and .v(t, t) are the non-equilibrium Green’s functions of the 
open system we introduced and can be dynamically determined by Eqs. (13.42) 
and (13.43) [195–197]. 

With the propagating function solution (13.46), the reduced density 
matrix (13.16) is also solved exactly: 

. 〈ξf |ρS(t)|ξ ′
f 〉=A(t)

∫
dμ(ξ0)dμ(ξ ′

0) exp
{
ξ

†
f K1(t, t0)ξ0 + ξ ′†

0K
†
1(t, t0)ξ

′
f

(13.48) 

± ξ ′
0 

† 
K3(t, t0)ξ0 + ξ

† 
f K2(t)ξ

′
f

}
〈ξ0|ρS(t0)|ξ ′

0〉. 

Furthermore, using the probability normalization condition that the trace of the 
reduced density matrix equals to one, 

.

∫
dμ(ξf )〈ξf |ρS(t)| ± ξf 〉 = 1, (13.49)
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we find the normalized constant .A(t) in the propagating function (13.46): 

.A(t) = (
det[1 ± v(t)])∓1

. (13.50) 

Thus, for any given initial state of the system, one can obtain the time evolution of 
its reduced density matrix from the above solution (13.48). 

The above solution of the reduced density matrix is given in the coherent state 
representation. For the study of open system dynamics, it is more convenient if we 
could find the equation of motion for the reduced density matrix in the operator 
form. This can be done by taking a time derivative to the solution (13.48) of the  
reduced density matrix, and using the D-algebra of particle creation and annihilation 
operators acting on the coherent state [17] 

.ai |ξ〉 = ξi |ξ〉, a
†
i |ξ〉 = ± ∂

∂ξi

|ξ〉, . (13.51a)

〈ξ |a† 
i = 〈ξ |ξ∗

i , 〈ξ |ai = 
∂ 

∂ξ∗
i

〈ξ |, (13.51b) 

it is not difficult to find the following exact master equation: 

.
d

dt
ρS(t) = 1

ih̄

[
Hr

S (t), ρS(t)
]

(13.52) 

+
∑

ij

{
γ ij (t, t0)

[
2ajρS(t)a

† 
i −a

† 
i ajρS(t)−ρS(t)a

† 
i aj

]

+γ̃ ij (t, t0)
[
a

† 
i ρS(t)aj±ajρS(t)a

† 
i ∓ a

† 
i ajρS(t)−ρS(t)aj a

† 
i

]}
. 

Here, again the upper and lower signs of . ± correspond, respectively, to the bosonic 
and fermionic systems. In this exact master equation, all the renormalization effects 
arise from the system-reservoir interactions that have been taken into account when 
the environmental degrees of freedoms are integrated out non-perturbatively and 
exactly. These renormalization effects are manifested by the renormalized system 
Hamiltonian, 

.Hr
S (t) =

∑
ij
εr

S,ij (t, t0)a
†
i aj (13.53) 

and the dissipation and fluctuation coefficients .γ ij (t, t0) and .̃γ ij (t, t0) in 
Eq. (13.52). These time-dependent coefficients are determined non-perturbatively 
and exactly by the following relations: 

.εr
S,ij (t, t0) =−h̄Im

[
u̇(t, t0)u

−1(t, t0)
]
ij
, . (13.54a) 

γ ij (t, t0) =−Re
[
u̇(t, t0)u−1(t, t0)

]
ij , . (13.54b)

γ̃ ij (t, t0) = v̇ij (t, t)−
[
u̇(t, t0)u−1(t, t0)v(t, t)+h.c.

]
ij . (13.54c)
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The master equation shows that the environment induced the dissipation and fluc-
tuations, described by the terms proportional to the dissipation coefficient . γ ij (t, t0)

and the fluctuation coefficient .̃γ ij (t, t0). The former determines the relaxation of 
the system dynamics, while the latter characterize the dephasing of the system 
that makes the system approach to thermal equilibrium in the steady-state limit. 
It also shows how disorders of quantum dynamics emerge and how open systems 
are eventually thermalized, as we will discuss later. In other words, the randomness 
in nature is originated microscopically from the interaction between the system and 
its environment. 

The exact master equation (13.52) is the most general and exact one discovered 
thus far for open quantum systems [195–197]. It has been extended to Majorana 
states for dissipative topological systems [199, 201], and it has also been applied 
to the generalized quantum Brownian motion with momentum-dependent cou-
plings between the system and the environment [210]. The conventional quantum 
Brownian motion that was originally proposed by Feynman and Vernon and by 
Caldeira and Leggett is a special case of the generalized quantum Brownian 
motion, as we have shown very recently [210]. The exact master equation for 
the conventional quantum Brownian motion is the only exact master equation one 
obtained in the last century and is only valid for a harmonic oscillator coupled to 
the environment consisting of many harmonic oscillators with an initially decoupled 
system-environment state. Now one can see that the exact master equation (13.52) 
is valid for a large class of bosonic and fermionic open systems, and it has also 
been extended for the initially system-environment entangled states [201]. As 
we shall discuss in the next section, other approximated master equations, such 
as the Redfield master equation and the Markov master equation that are often 
used [211, 212], can easily be reduced from the exact master equation (13.52). 
From the exact master equation (13.52), we can also easily derive the quantum 
transport theory for the non-equilibrium open systems [196, 197]; it can reproduce 
the Meir-Wingreen formula describing the electric current in mesoscopic system 
[213, 214] and the Landauer-Büttiker formula [215, 216] for the equilibrium limit; 
see Sect. 13.6. 

13.4 Master Equation in the Weak-Coupling Limit 

Before the 2000s, except for the quantum Brownian model, one does not know 
how to discover the exact master equation for other open systems. Therefore, in 
studying the open quantum systems, one often deploys various approximations 
and assumptions. Typical assumptions were the Born approximation and Markov 
approximation. The Born approximation assumes that the environment remains 
invariant, and the Markov approximation assumes that all the memory effect can be 
ignored during the non-equilibrium evolution of the system. Such approximations 
allow one to make a perturbation reduction of the von Neumann equation with 
respect to the system-environment interaction Hamiltonian. In the literature, the 
resulting equation of motion is known as the Redfield master equation or the Born-
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Markov approximation in the literature [211, 212]. However, rigorously speaking, 
the Born and Markov approximations are illogical. If the environment remains 
unchanged, namely, the environment keeps in the same initial thermal state, then 
the state of the system is always decoupled from the environment state. This simply 
cannot be true because the coupling between the system and the environment makes 
them entangled together so that the environment state must necessarily be altered. 
Here, we shall use the exact master equation and explicitly carry out a perturbation 
expansion to the second order with respect to the system-environment couplings. In 
this manner, we can naturally produce the Redfield master equation and the Born-
Markov (BM) master equation without the need to resort to the Born and Markov 
assumptions. 

As we have seen from the exact master equation (13.52), the dynamics of 
open systems is embedded into the time-dependent coefficients of the energy 
renormalization, the dissipation, and fluctuations in the master equation. These 
time-dependent coefficients are determined non-perturbatively by integrodifferen-
tial equations of motion for the non-equilibrium Green functions, Eqs. (13.72) 
and (13.43). These integrodifferential equations of motion carry the typical form 
of the Dyson equation in quantum field theory which possess a natural perturbation 
expansion with respect to the interaction Hamiltonian. Here the interaction Hamil-
tonian is the system-environment coupling Hamiltonian .HES which is proportional 
to the system-environment coupling . Vik . We can find the coefficients of the energy 
renormalization, the dissipation, and fluctuations in Redfield/Born-Markov master 
equation from the exact results of Eq. (13.54) by simply taking a perturbation 
expansion up to the second order in terms of the system environment coupling . Vik . 
In this respect, there is no need for the additional Born and Markov approximations. 

To be explicit, the two-time system-environment correlations .gij (τ, τ
′) and 

.̃gij (τ, τ
′) are proportional to the product of two system-environment couplings 

.∼ ∑
k Vik(τ )V ∗

jk(τ
′). For convenience and without any loss of generality, we 

may let the system and environment energy spectra as well as the system-
environment couplings in the total Hamiltonian (13.5) to be time-independent. 
Then the system-environment correlation functions .gij (τ, τ

′) and .̃gij (τ, τ
′) of 

Eq. (13.35) are reduced to 

.gij (τ, τ
′) = 1

h̄2

∫
dε

2π
J ij (ε)e

− i
h̄
ε(τ−τ ′)

, . (13.55a)

g̃ij (τ, τ ′) = 
1 

h̄2

∫
dε

2π 
J ij (ε)f (ε, T0)e

− i 
h̄
ε(τ−τ ′) 

, (13.55b) 

where 

.J ij (ε) = 2π
∑

k

VikV
∗
jkδ(ε − εk) = 2π(ε)Vi(ε)V

∗
j (ε) (13.56)
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is the spectral density matrix of the environment and the .(ε) is the environmental 
density of states. When the system-environment couplings are weak, we can take the 
perturbation expansion of the time-dependent coefficients in Eq. (13.54) up to the  
second-order of the coupling strength .Vi(ε), namely, up to the terms proportional to 
the spectral density .J ij (ε). This implies that the non-equilibrium Green functions 
.u(τ, t0) and .u−1(t, t0) in the right-hand side of Eq. (13.72) need only to keep to the 

zeroth order: .u0(τ, t0) = e
− i

h̄
εS(τ−t0) and .u−1

0 (t, t0) = e
i
h̄
εS(t−t0). Thus, up to the 

second-order perturbation expansion, we can obtain directly from Eq. (13.42a) that 

.u̇(t)u−1(t) � − i

h̄
εS − 1

h̄2

∫ t

t0

dτ

∫
dε

2π
J (ε)e

− i
h̄
(ε−εS)(t−τ)

. (13.57) 

Similarly, up to the second-order perturbation expansion, Eq. (13.43 can simply be 
taken as 

.v̇(t, t) � 2

h̄2

∫ t

t0

dτ

∫
dε

2π
J (ε)f (ε, T ) cos

[ 1

h̄
(ε − εS)(t − τ)

]
. (13.58) 

The term .v(t, t)u̇(t, t0)u
−1(t, t0)+H.c in Eq. (13.54c) is proportional to .|V (ε)|4 and 

therefore can be neglected. As a result, in the second-order perturbative expansion, 
the coefficients of Eq. (13.54) are reduced to 

.εBM(t, t0) � εS − 1

h̄

∫ t

t0

dτ

∫
dε

2π
J (ε) sin

[ 1

h̄
(ε − εS)(t − τ)

]
, . (13.59a) 

γ BM(t, t0) � 1 

h̄2

∫ t 

t0 

dτ

∫
dε

2π 
J (ε) cos

[ 1 

h̄ 
(ε − εS)(t − τ)

]
, . (13.59b)

γ̃ BM(t, t0) � 2 

h̄2

∫ t 

t0 

dτ

∫
dε

2π 
J (ε)f (ε, T ) cos

[ 1 

h̄ 
(ε − εS)(t − τ)

]
. (13.59c) 

Substituting these coefficients into Eq. (13.52), we obtain the Redfield/Born-Markov 
master equation 

.
d

dt
ρS(t) = 1

ih̄

[
HBM

S (t, t0), ρS(t)
]

(13.60) 

+
∑
ij

{
γ BM 

ij (t, t0)
[
2ajρS(t)a

† 
i −a

† 
i ajρS(t)−ρS(t)a

† 
i aj

]

+γ̃ BM 
ij (t, t0)

[
a

† 
i ρS(t)aj±ajρS(t)a

† 
i ∓ a† 

i ajρS(t)−ρS(t)aj a
† 
i

]}
. 

Here .HBM
S (t, t0) = ∑

ij εBM
S,ij (t, t0)a

†
i aj the second-order renormalized Hamilto-

nian of the system. Obviously, this master equation is an approximative one that 
is valid only when the system-environment couplings are very weak, although
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formally it has the same form as the exact master equation (13.52). In the literature, 
one usually obtains such approximated master equation from the von Neumann 
equation under the Born and Markov assumptions. In our derivation, only the 
perturbation is used from the exact solution. Therefore there is no need to invoke 
the Born and Markov assumptions. 

Besides the weak couplings, for some open quantum systems, the dynamical 
time scale of the system is much longer than the time scale of the environment. 
That is, the environment modes are dominated by the rapid oscillations compared to 
the decay time of the system. In such a situation, the . τ integration in Eq. (13.59) is  
dominated by much shorter time of the decay time of reservoir correlations. In other 
words, one can effectively take the . τ integration to infinity in Eq. (13.59): 

. lim
t→∞

∫ t−t0

0
dt ′e± i

h̄
(ε−εS)t

′ = πh̄δ(ε − εS) ∓ ih̄
P

ε − εS

. (13.61) 

This is called the Markov limit or the secular approximation, where . P denotes the 
Cauchy principal value of the integral. As a result, all the coefficients in the Born-
Markov master equation, given by Eq. (13.59), can be further reduced to the time-
independent constants: 

.εBM
S,ij t, t0) → εS,iδij + δεS,ij . (13.62a) 

γ BM 
ij (t, t0) → 

1 

2h̄ 
J ij (εS,i ) = γ ij . (13.62b)

γ̃ BM 
ij (t, t0) → 

1 

h̄ 
J ij (εS,i )f (εS,i , T  )  = 2γ ij f (εS,i , T  ), (13.62c) 

and the energy shift is given by .δεS,ij = P
[∫

dε
2π

J ij (ε)

ε−εS,i

]
. The Born-Markov master 

equation (13.60) is also further simplified to 

.
d

dt
ρS(t) =

∑
ij

{ 1

ih̄
(εS,iδij + δεS,ij )[a†

i aj , ρS(t)] (13.63) 

+ γ ij
[
2ajρS(t)a

† 
i − a† 

i ajρS(t) − ρS(t)a
† 
j ai

]

+ 2γ ij f (εS,i , T  )
[
a

† 
i ρS(t)aj + ajρS(t)a

† 
i − a† 

i ajρS(t) − ρS(t)aj a
† 
i

]}
. 

This master equation is known as the Markov-limit master equation because it is 
obtained under the long-time Markov limit. Nevertheless, neither the Redfield/Born-
Markov master equation nor the Markov master equation is incapable exhibiting 
the non-Markovian effect. This is because the memory effect has been entirely 
ignored either by the Markovian assumption or by the long-time Markov limit. This 
conclusion will become more transparent in the next section where we will show 
that in the weak coupling regime, the exact master equation and the BM master



13.4 Master Equation in the Weak Coupling Limit 303

equation give qualitatively the same dynamics, namely, the damping dynamics is a 
simple exponential decay, and non-Markovian effect no longer can exist. 

It is worth mentioning that Eq. (13.64) can be further written in the following 
form: 

.
d

dt
ρS(t) =

∑
ij

{ 1

ih̄
(εS,iδij + δεS,ij )[a†

i aj , ρS(t)] (13.64) 

+ 2γ ij
[
1 + f (εS,i , T  )

][
ajρS(t)a

† 
i − 

1 

2 
a

† 
i ajρS(t) − 

1 

2 
ρS(t)a

† 
i aj

]

+ 2γ ij f (εS,i , T  )
[
a

† 
i ρS(t)aj − 

1 

2 
aja

† 
i ρS(t) − 

1 

2 
ρS(t)aj a

† 
i

]}
. 

In the literature, one often refers to the above form of the master equation as 
the Lindblad master equation. This is because it apparently has the same form as 
the Lindblad-GKS master equation. But, unfortunately, this is a misunderstanding. 
The Lindblad-GKS master equation was derived mathematically by Lindblad 
and by Gorini, Kossakowski, and Sudarshan independently through the quantum 
dynamical semigroup which is defined by the completely positive maps for the 
irreversible processes [217,218]. It requires .N2−1 independent Lindblad generators 
to construct the completely positive maps for a N -dimensional Hilbert space of 
the concerned system. Otherwise, the Lindblad-GKS master equation cannot be 
formulated without the completeness of the Lindblad generators. On the other hand, 
the number of the generators . ai and . a

†
i in Eq. (13.64) is at most linearly proportional 

to the dimension of the Hilbert space of the open system. Therefore, the number of 
the generators in the exact master equation (13.64) is much less than the independent 
generators of the dynamical semigroup in the Lindblad-GKS master equation for 
the same system. Except for the spin-1/2 system (which accidentally has the same 
number of the Lindblad generators with the independent spin operators), there is 
not any master equation derived from the von Neumann equation (either exactly 
or approximately) that can be identified with the Lindblad-GKS master equation 
for the completely positive maps. In other words, the pure mathematically derived 
Lindblad-GKS master equation has no connection with the fundamental evolution 
of open systems in terms of the fundamental degrees of freedom. In the literature, 
there is much confusion regarding the pictures of completely positive maps with the 
physical master equation of open systems derived from the von Neumann equation. 
In fact, the exact master equation (13.52) and the second-order perturbation master 
equation (13.60) all have the same operator form as Eq. (13.64), but they have 
nothing to do with Lindblad’s dynamical semigroups for the completely positive 
maps of the density matrix.



304 13 Open Quantum Systems

13.5 General Non-Markovian Dynamics of Open Systems 

From the exact master equation in the last section, we can define more physically 
the concept of non-Markovian dynamics and discuss the general non-Markovian 
properties in open systems. Non-Markovian dynamics represents memory processes 
of the dynamical evolution of open systems. That is, the present state of a physical 
system is determined not only by its previous states in an infinitesimal time interval 
but also explicitly by all the past historical states. In other words, the equation of the 
motion for the state evolution, given by the master equation for the reduced density 
matrix, is usually a time-convolution equation. However, the exact master equation 
derived in the last section, Eq. (13.52), is a time-convolutionless equation. This is 
because the time convolution that characterizes non-Markovian memory processes 
is converted into the equations of motion for the non-equilibrium Green functions 
.u(t, t0) and .v(t, t), as shown by Eq. (13.42). These non-equilibrium Green functions 
determine all the non-Markovian memory dynamics through the time-dependent 
coefficients in the master equations, including the energy renormalization, the 
dissipation, and fluctuation coefficients. Dynamical equations of motion without 
involving time convolution cannot manifest the memory effect. 

Furthermore, the correlation Green function .v(t, t) is determined by the retarded 
Green function .u(t, t0) through the fluctuation-dissipation theorem; see Eq. (13.43). 
Then the general properties of non-Markovian dynamics can be extracted from 
the propagating Green function . u(t, t0). From Eqs. (13.54), the formal solution of 
propagating Green function .u(t, t0) can be expressed in terms of the renormalized 
system energy spectrum and the dissipative damping coefficient .γ (t) as 

.u(t, t0) = T exp
{
−

∫ t

t0

dτ
[ i

h̄
ε̃r

S(τ ) + γ (τ )
]}

, (13.65) 

where . T is the time-ordering operator. This solution shows clearly that . u(t, t0)

contains explicitly a damping factor given by dissipation coefficient in the exact 
master equation, which is induced by the coupling to the environment. However, 
due to the time dependence of the dissipation coefficients, the detailed dissipation 
dynamics can vary significantly for different environments, as the manifestation of 
different non-Markovian memory effects. 

Without any loss of generality, we simplify again the system and environ-
ment energy spectra as well as the system-environment couplings to be time-
independent. Then, we can rewrite the system-environment two-time correlation 
functions .g(τ, τ ′) = g(τ − τ ′) and .̃g(τ, τ ′) = g̃(τ − τ ′), see Eq. (13.55). As 
a result, the non-equilibrium propagating Green function also has the property 
.u(t, t0) = u(t − t0). Applying the modified Laplace transform, 

.U(z) =
∫ ∞

t0

dt u(t − t0)e
i
h̄
z(t−t0), (13.66)
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to Eq. (13.42a), we obtain the Laplace transform of .u(t − t0), 

.U(z) = ih̄

zI − εS − �(z)
, (13.67) 

where . I is the identity matrix. The function .�(z) is the self-energy correction, i.e., 
the Laplace transform of the integral part in Eq. (13.42a), 

.�(z) =
∫

dε

2π

J (ε)

z − ε

z=ε±i0+−→ �(ε) ∓ i
J (ε)

2
, (13.68) 

and .�(ε) = P
[∫

dε′
2π

J (ε′)
ε−ε′

]
induces the energy shift of the system. It can be shown 

that the general solution of .u(t, t0) is given by 

.u(t − t0) =
∑

l

Z le
− i

h̄
εl (t−t0) (13.69) 

+
∑

b

∫
Bb 

dε

2πh̄

[
U(ε + i0+) − U(ε − i0+)

]
e
− i 

h̄
ε(t−t0) . 

=
∑

l 
Z le

− i 
h̄ εl(t−t0) +

∫
dε

2π 
D(ε)e

− i 
h̄
ε(t−t0) , 

where 

.D(ε) = U(ε + i0+) − U(ε − i0+) (13.70) 

= 1

ε−εS −�(ε)+i J (ε) 
2 

J (ε) 
1

ε−εS −�(ε)−i J (ε) 
2 

. 

The first term in (13.69) is the contribution of localized bounded states with poles 
.{εl} located at the real z axis with .J (εl) = 0, i.e., 

.εlI − εS − �(εl) = 0 and J (εl) = 0. (13.71) 

The coefficients .{Z l} are the corresponding residues of the poles. It shows that the 
localized bound states exist only when the environmental spectral density has band 
gaps or a finite band structure in the corresponding energy spectrum regions; see 
Fig. 13.2. These localized modes do not decay, and give the dissipationless long-
time non-Markovian dynamics. The second term in (13.69) is the contribution from 
the branch cuts .{Bb}, due to the discontinuity of .�(z), so does .U(z), across the real 
axis on the complex space z; see Eq. (13.68). The branch cuts usually generate non-
exponential decays, which is a short-time character of the non-Markovian dynamics. 
When the system is weakly coupled to the environment, the non-exponential decays 
are reduced to exponential-like decays.
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Fig. 13.2 (Color online) A schematic pole structure of the retarded Green function . U(z). The  
thick red lines on the real z axis correspond to .J (z) �= 0 [198] 

Equation (13.69) is the general solution of the non-Markovian dissipation 
dynamics. It shows that the non-Markovian dissipation dynamics consists of non-
exponential decays plus dissipationless localized bound states. This is the general 
dynamic feature of any microscopic particle (considered as the principal system) 
moving in many-body systems (treated as the environment). Such a solution of the 
propagating Green function .u(t, t0) is generic and can be proven from the quantum 
field theory, even if particle-particle interactions are included. 

As an example, we consider the open system of a single particle in the state with 
energy . εs , in contact with the surrounding as an arbitrary environment at finite initial 
temperature . T0. Then the solution (13.69) can be written further as 

.u(t − t0) =
∑

l

Zl (εl)e
− i

h̄
εl (t−t0) +

∫
dε

2π
Dd(ε)e

− i
h̄
ε(t−t0). (13.72) 

The localized bound state energy (frequency) . εl and its amplitude .Zl (εl) are simply 
determined by 

.εl − εs − �(εl) = 0 and Zl (εl) = 1

1 − ∂ε�(ε)|ε=εl

, (13.73) 

where 

.�(ε)=
∫

dε′

2π

J(ε′)
ε − ε′ and �(ε) = P

[∫ dε′

2π

J(ε′)
ε − ε′

]
(13.74) 

are the environment-induced self-energy correction and energy shift, respectively. 
The dissipation spectrum .Dd(ε) is given by 

.Dd(ε) = U(ε + i0+) − U(ε − i0+) (13.75) 

= J (ε)  
[ε − εs − �(ε)]2 + J 2(ε)/4 

. 

It is particularly important to note that the localized bound states (the first term in 
Eq. (13.72)) only exist if the spectral density .J (ε) contains band gap(s) or zero 
energy points with sharp slopes, while the dissipation spectrum .Dd(ε) (proportional
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Fig. 13.3 (Color online) A schematic plot of the energy spectrum of a single-particle open system 
modified by the interaction with the environment 

to . J (ε); see Eq. (13.151a)) is crucially determined by the spectral density profile; 
see Fig. 13.3. In general, the solution (13.72) can be written as 

.u(t − t0) =
∫

dε

2π
DS(ε)e

− i
h̄
ε(t−t0), (13.76) 

where 

.DS(ε) = 2π
∑

l

Zl (εl)δ(ε − εl) + Dd(ε). (13.77) 

This shows that the original energy level of the system is modified as a combination 
of localized bound state and a continuous spectrum due to the influence of the 
environment. In the steady-state limit .t = ts → ∞, only the dissipationless 
oscillation terms remain: 

.u(ts − t0) =
∑

l

Zle
−iεl (ts−t0). (13.78) 

If the localized bound state does not exist, .u(ts − t0) → 0 in the steady-state limit, 
resulting in a complete relaxation process. 

On the other hand, the general solution of the correlation (fluctuating) Green 
function .v (τ, t) is given by Eq. (13.43). For an open system of a single particle in 
the state with energy . εs coupled to a thermal environment with initial temperature 
. T0, the steady-state (.t → ∞) solution of Eq. (13.43) is reduced to 

.v(ts, ts → ∞) =
∫ ∞

t0

dt1

∫ ∞

t0

dt2u(τ, t1)g̃(t1, t2)u
∗(t, t2) =

∫
dε

2π
χ(ε) (13.79) 

where 

.χ(ε) = [Db(ε, ts) + Dd(ε)]f (ε, T0), (13.80)
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and 

.Db(ε, ts) = 2π
∑
j,m

J (ε)ZlZm

(ε − εl)(ε − εm)
cos[(εl − εm)(ts − t0)]. (13.81) 

The function .f (ε, T0) is the Bose-Einstein or Fermi-Dirac distribution function, 
depending on the system being made of bosons or fermions. Equation (13.80) is the  
generalized equilibrium fluctuation-dissipation theorem modified by the localized 
bound states of open systems. If there is no localized bound state, .Zl = 0, then 

.χ(ε) = Dd(ε)f (ε, T0). (13.82) 

This is the equilibrium fluctuation-dissipation theorem at arbitrary temperature. 
With the analytical solutions (13.72) and (13.79), we can depict the dissipation 

and fluctuation dynamics through the time-dependent dissipation and fluctuation 
coefficients, .γ (t, t0) and .γ̃ (t, t0), in the exact master equation (13.52). To be more 
specific, we consider a single-mode bosonic nanosystem, such as a nanophotonic or 
optomechanical resonator, coupled to a general non-Markovian environment with 
spectral density 

.J (ε) = 2πηε
( ε

εc

)s−1
exp

(
− ε

εc

)
, (13.83) 

where . η is a dimensionless parameter characterizing the coupling strength between 
the system and the environment and . εc is the frequency cutoff. When .s = 1, .< 1, 
and .> 1, the corresponding environments are called as the Ohmic, sub-Ohmic, and 
super-Ohmic, respectively. For simplicity, we also set .t0 = 0. The analytical solution 
of the retarded Green function is analytically given by 

.u(t) = Ze
− i

h̄
ε′t +

∫ ∞

0

dε

2π

J(ε)e
− i

h̄
εt

[ε − εs − �(ε)]2 + J 2(ε)/4
, (13.84) 

where .�(ε) = 1
2 [�(ε + i0+) + �(ε − i0+)] and the self-energy correction 

.�(ε) = −ηεc�(s + 1)(−ε̃)se−ε̃�(−s,−ε̃), (13.85) 

where .�(x) =∫ ∞
0 dt tx−1e−t is the gamma function, .�(α, z) =∫ ∞

z
dt tα−1/et is the 

complementary incomplete Gamma function, and .̃ε = ε/εc. Due to the vanishing 
spectral density for .ε < 0, a localized mode occurs at 

.ε′ = εs − �(ε′) < 0 for ηεc�(s) > εs. (13.86) 

The corresponding residue is .Z = 1/[1 − �′(ε′)]. Figure 13.4 shows that the 
dissipation and fluctuation of a single-mode nanocavity coupled to a sub-Ohmic
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Fig. 13.4 The time evolution of the retarded Green function .|u(t)|, the dissipation and the 
fluctuation coefficients, .γ (t) and .γ̃ (t) of a single-mode nanocavity coupled to sub-Ohmic thermal 
bath (.s = 1/2), for different values of the coupling constant . η. Other parameters are taken as 
.εc = εs and also .kBT = εs [198] 

thermal bath with .s = 1/2. One can see that for a small . η, the dissipation dynamics 
is an exponential-like decay. The corresponding .γ (t) and .γ̃ (t) are time-dependent 
but always positive (corresponding to Markovian dynamics). When .η > 0.3, 
the non-exponential decay dominates, and .γ (t) and .γ̃ (t) oscillate in positive and 
negative values with nonzero asymptotical values. When .η > 0.6, the localized 
state occurs, and .u(t) does not decay to zero. Correspondingly, .γ (t) and . ̃γ (t)

asymptotically approach to zero. 
The above solution gives the general answer to the non-Markovian memory 

dynamics in open systems [198]: The non-exponential decays, the second terms 
in Eq. (13.72), are induced by the discontinuity in the imaginary part of the 
environmental-induced self-energy correction to the system Hamiltonian, . �(ε ±
i0+) = �(ε) ∓ iJ (ε)/2. Depending on the detailed spectral density structure 
of .J (ω), it could result in damping coefficients oscillating between positive and 
negative values in short times. As a short-time non-Markovian memory effect, such 
oscillations correspond to the forward and backward information flow between the 
system and the environment. The dissipationless oscillations, characterized by the 
localized bound states which arise from band gaps or a finite band structure of 
environment spectral densities, provide a long-time non-Markovian memory effect. 
This is because information flowing between the system and environment could rest 
forever, due to the existence of the dissipationless localized bound state. Fluctuation 
dynamics induces similar non-Markovian dynamics as dissipation through the
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generalized non-equilibrium fluctuation-dissipation relations that are obtained from 
non-equilibrium correlation Green function of Eq. (13.43). 

Furthermore, the non-Markovian dynamics can be quantitatively described in 
terms of two-time correlation functions [209], 

.N (t, τ ) =
∣∣∣∣ 〈f1(t)f2(t + τ)〉√〈f1(t)f2(t)〉〈f1(t + τ)f2(t + τ)〉 (13.87) 

− 〈f1(t)f2(t + τ)〉boldsymbol√〈f1(t)f2(t)〉boldsymbol〈f1(t + τ)f2(t + τ)〉boldsymbol

∣∣∣∣, 

where . f1 and . f2 can be any two physical observables of the system. The exact two-
time correlation function .〈f1(t)f2(t + τ)〉 can be obtained either from experiments 
or theoretical calculations, and the two-time correlation function . 〈f1(t)f2(t +
τ)〉boldsymbol can be evaluated through the second-order perturbation master equa-
tion (13.60). It can be shown that the second-order master equation obeys the 
quantum regression theorem and therefore can only describe Markov processes. 
Such a quantity characterizing the non-Markovianity can be rather easily mea-
sured experimentally. For example, the exact two-time current-current correlation 
.〈I (t)I (t + τ)〉 in nanoelectronic systems has been studied experimentally in 
nanoelectronics. The two-time photon number correlation .〈n(t)n(t + τ)〉 is also 
experimentally measured extensively through photon bunching and anti-bunching 
experiments. Detailed discussions can be found from [209]. Thus, a quantitative 
measurement of non-Markovian dynamics can be obtained through two-time corre-
lation functions. This gives the general physical picture of the quantum memory in 
open systems. 

13.6 Quantum Transport Theory of Mesoscopic Nanosystems 

Mesoscopic systems refer to systems measuring in the nanometer (.10−9 m) scale 
of nanostructures which is in size intermediate between molecule and bacterium. 
The characteristic dimension of a mesoscopic nanodevice is smaller than one or 
more of these length scales: the de Broglie wavelength of the electrons, their mean 
free path, and the phase coherence length (distance over which an electron can 
interfere with itself). Such devices usually do not follow the Ohmic law because 
of the quantum mechanical wave nature of electrons. Understanding how electrons 
behave over such tiny distant scales is therefore of great importance to the quantum 
electronics, quantum communication, and quantum computations. The enormous 
mobilities of electrons in nanodevices enable one to explore fundamental physics of 
quantum nature, because except for confinement and effective mass, the electrons do 
not interact with each other very often, so that they can travel several micrometers 
before colliding. As a result, the quantum coherence of electron wave may play 
an important role in its transport processes. Theoretically, electrons transport in 
mesoscopic systems described as physical systems consisting of a nanoscale active
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region (the device system) attached to multiple reservoirs of charges. The device 
system exchanges the particles, energy, and information with the surroundings; 
it is thus a typical open system described by Eq. (13.5) with an extension of the 
system coupled to multiple reservoirs. The issues of open quantum systems, such as 
dissipation, fluctuation, and decoherence, will inevitably arise. Furthermore, when 
a bias is present, the transient transport properties have to be examined within a 
non-equilibrium framework. 

Preliminary quantum transport theories were based on the Landauer-Büttiker 
approach [215, 216]. However, in this approach, systems are usually treated as 
perfect conductors without any dissipation. Hence, such an approach can only be 
applied to ballistic systems near thermal equilibrium. In order for nanodevices to 
functionally operate in present logic gate-based computational dynamics, it must 
be subjected to high source-drain voltages and high-frequency bandwidths. When it 
is far from equilibrium, for highly transient and highly nonlinear regimes, a more 
microscopic theory has been developed for quantum transport in terms of non-
equilibrium Green functions [213, 214]. Furthermore, the device system exchanges 
the particles, energy, and information with the leads and is a typical open system 
in which the dissipation, fluctuation, and decoherence all are heavily involved. 
The master equation approach which fully addresses the dissipation, fluctuation, 
and decoherence dynamics could provide a more microscopic description for the 
transient quantum transport [196, 197]. 

We shall extend the Hamiltonian (13.5) to the case with multiple reservoirs, 
such as quantum electronic devices coupled to several electrodes (leads) in nano-
and quantum electronics and also nano- or micro-cavities coupled with several 
waveguides in integrated photonic circuits. The corresponding Hamiltonian is 

.Htot(t) =
∑

i

εS,i (t)a
†
i ai +

∑
αk

εαk(t)b
†
αkbαk (13.88) 

+
∑
iαk

(
Viαk(t)a

† 
i bαk + V ∗iαk(t)b

† 
αkai

)
, 

where the index . α denotes different reservoirs. Following the same procedure given 
in Sec. II, we can find the exact master equation of (13.88). The exact master 
equation remains the same form, but we can also rewrite it in terms of suppercurrent 
form [196,197], in order to find the connection with the transient current in quantum 
transport 

.
dρ(t)

dt
= 1

ih̄
[Hr

S (t, t0), ρ(t)] (13.89) 

+
∑
ij 

γ ij (t, t0)[2ajρ(t)a
† 
i − ρ(t)a

† 
i aj − a† 

i ajρ(t)]
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+
∑
ij

γ̃ ij (t, t0)[a† 
i ρ(t)aj ± ajρ(t)a

† 
i ∓ a† 

i ajρ(t) − ρ(t)aj a
† 
i ], 

= 
1 

i ̄h
[HS(t), ρ(t)] +

∑
α 

[L+
α (t, t0) + L−

α (t, t0)]ρ(t). 

In the second equality of the above equation, .L+
α (t, t0) and .L−

α (t, t0) are the 
suppercurrent operators: 

.L+
α (t, t0)ρ(t) =

∑
ij

{
λαij (t, t0)[ajρ(t)a

†
i − ρ(t)aj a

†
i ]. (13.90a) 

− καij (t, t0)a† 
i ajρ(t) + H.c.

}
, 

L−
α (t, t0)ρ(t) =

∑
ij

{
λαij (t, t0)[a† 

i ρ(t)aj − a† 
i ajρ(t)] (13.90b) 

+ καij (t, t0)ajρ(t)a
† 
i + H.c.

}
. 

The superoperators .L+
α (t, t0) and .L−

α (t, t0) are intimately related to the transport 
current through the reservoir . α, as we will see next. The renormalized system 
Hamiltonian .Hr

S (t, t0) with the associated renormalized energy .ω′
ij (t, t0) and the 

dissipation coefficient .γ ij (t, t0) as well as the fluctuation coefficients .̃γ ij (t, t0) in 
the master equation (13.89) remain the same forms as that given by Eq. (13.54). But 
they can also be expressed in terms of new coefficients .κα(t, t0) and .λα(t, t0) given 
in the suppercurrent operators (Eq. (13.90)): 

.Hr
S (t, t0) =

∑
ij

εr
S,ij (t, t0)a

†
i aj , . (13.91a) 

εr 
S,ij (t, t0) =−h̄Im

[
u̇(t, t0)u−1(t, t0)

]
ij
. (13.91b) 

= εS,i (t)δij − 
ih̄ 
2

∑
α 

[κα(t, t0) − κ† 
α(t, t0)]ij , 

γ ij (t, t0) =−Re
[
u̇(t, t0)u−1(t, t0)

]
ij
. (13.91c) 

= 
1 

2

∑
α 

[κα(t, t0) + κ† 
α(t, t0)]ij ,

γ̃ ij (t, t0) = v̇ij (t, t)−
[
u̇(t, t0)u−1(t, t0)v(t, t)+h.c.

]
ij

(13.91d) 

=
∑
α 

[λα(t, t0) + λ† 
α(t, t0)]ij
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They are determined by the non-equilibrium Green function .u(t, t0) and .v(t, t0), 

.κα(t, t0) =
∫ t

t0

dτgα(t, τ )u(τ, t0)u
−1(t, t0) , . (13.92a) 

λα(t, t0) = −κα(t)v(t, t) +
∫ t 

t0 

dτ [gα(t, τ)v(τ, t) − g̃α(t, τ)ū(τ, t)], 
(13.92b) 

where .gα(t, τ ) and .̃gα(t, τ ) are the two-time correlation functions between the 
system and the reservoir . α, 

.gα,ij (τ, τ
′) =

( 1

h̄

)2 ∑
k

Viαk(τ )uαk0(τ, τ
′)V ∗

jαk(τ
′), . (13.93a)

g̃αij (τ, τ ′) =
( 1 

h̄

)2 ∑
k 

Viαk(τ )uαk0(τ, τ ′)V ∗jαk(τ
′)f (εαk, Tα,0), (13.93b) 

and .f (εαk, Tα,0) = 1/[e(εαk−μα,0)/kBTα,0 ∓ 1] is the initial electron distribution of 
the reservoir . α at initial temperature .Tα,0 with initial chemical potential . μα,0. The  
non-equilibrium Green functions .u(t, t0), .v(t, t) obey the same time-convolution 
equation of motion (13.42) with the extension to multiple reservoirs. 

To be more specific, we shall now consider the electron current flowing from the 
system into the reservoir . α. In the Heisenberg picture, such a current is defined by 

.Iα(t) ≡ −e
d〈Nα(t)〉

dt
= ie

h̄
〈[Nα(t),H(t)]〉 (13.94) 

= − ie 
h̄

∑
ki 

[Viαk(t)〈a† 
i (t)cαk(t)〉 −  V ∗iαk(t)〈c† 

αk(t)ai(t)〉], 

where e is the electron charge and .Nα = ∑
k c

†
αkcαk is the particle number operator 

in reservoir . α. To find the transport current from the exact master equation (13.89), 
we will introduce the one-particle reduced density matrix: 

.ρ
(1)
ij (t) ≡ trs[a†

j aiρ(t)] = 〈a†
j (t)ai(t)〉. (13.95) 

With the abovementioned conditions, from the Heisenberg equation of motion, it is 
easy to find the equation of motion as follows: 

.
dρ(1)(t)

dt
= − i

h̄
[εS(t), ρ

(1)(t)] −
∑
α

Iα(t) , (13.96)
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where .Iα(t) is the current matrix flowing into the reservoir . α: 

.Iαij (t) = i

h̄

∑
k

[Viαk(t)〈a†
j (t)cαk(t)〉 − V ∗

jαk(t)〈c†
αkai(t)〉]. (13.97a) 

Comparing Eqs. (13.94) and (13.97a), one can see that the trace of the current matrix 
is just the transport current flowing from the system into the reservoir . α: 

.Iα(t) = −e Tr[Iα(t)]. (13.98) 

where . Tr denotes the trace over the .N × N matrix of the N energy levels in the 
system. 

On the other hand, one can also obtain Eq. (13.96) directly from the exact master 
equation (13.89). The result is 

. 
d

dt
ρ

(1)
ij (t) = − i

h̄
[εS(t), ρ

(1)(t)]ij +
∑
α

trs[a†
j ai[L+

α (t) + L−
α (t)]ρ(t)] .

(13.99) 

Comparing Eqs. (13.96) and (13.99) for the single-particle reduced density matrix, 
with the help of Eqs. (13.90) and (13.92), we obtain the explicit formula of the 
current matrix: 

.Iα(t) =
∫ t

t0

dτ
{
gα(t, τ )n(τ, t) − g̃α(t, τ )u†(τ, t) + H.c.

}
. (13.100) 

Here we have introduced the one-particle correlation function . nij (τ, t) =
〈a†

j (t)ai(τ 〉 which can also be calculated directly from the Heisenberg equation 
of motion, 

.n(τ, t) = u(τ, t0)n(t0)u
†(t, t0) + v(τ, t), (13.101) 

and .ρ(1)(t) = n(t, t). Thus, the current flowing into the reservoir . α is simply given 
by 

.Iα(t) = −2eRe
∫ t

t0

dτTr[gα(t, τ )n(τ, t) − g̃α(t, τ )u†(τ, t)] (13.102) 

= −2eRe
∫ t 

t0 

dτTr[gα(t, τ)v(τ, t) − g̃α(t, τ)u†(τ, t) 

+ gα(t, τ)u(τ, t0)n(t0)u
†(t, t0)]. 

It shows that the transient transport current flowing into the reservoir . α from the 
system is fully determined by the time-correlation functions .gα(t, τ ) and .̃gα(t, τ )
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between the system and the reservoir and the non-equilibrium Green functions 
.u(τ, t) and .v(τ, t) of the system. The dissipation, fluctuation, and decoherence 
dynamics during the non-equilibrium evolution are fully taken into account. The 
last term in the second equality depends on the initial state which is important for 
the transient transport. 

We shall now apply the above discussed theory for a practical application. The 
simplest application is the noninteracting resonant-level model. The resonant-level 
model describes a single-level quantum dot or molecular with energy . εS that is 
in contact with two leads, the source and drain. The leads are treated as the free 
electron gas. The Hamiltonian is Eq. (13.88) with .α = L,R labeling the left and the 
right leads. Also, for simplicity, we consider the wideband limit (WBL), namely, the 
spectral density coupled to each lead is a constant, given by 

.Jα(ε) = 2π
∑

k

VαkV
∗
αkδ(ε − εαk) = �α, α = L,R. (13.103) 

Also, we have made the assumption that two leads are in the same initial temperature 
.TL,0 = TR,0 = T0. (With different initial temperatures for the source and the drain, 
one can also study the heating transport with this formulation.) Then the system-lead 
corrections function is reduced to 

.gα,ij (τ, τ
′) = 1

h̄2

∫ ∞

−∞
dε

2π
Jα(ε)e

− i
h̄
ε(t−t ′) = �α

h̄
δ(t − t ′), . (13.104a)

g̃αij (τ, τ ′) = 
1 

h̄2

∫ ∞ 

−∞ 

dε

2π 
Jα(ε)f (ε, T0)e

− i 
h̄
ε(t−t ′) (13.104b) 

= �α 

h̄2

∫ ∞ 

−∞ 

dε

2π 
e
− i 

h̄
ε(t−t ′) 

e(ε−μα,0)/kBT0 + 1 
, 

where . μL and . μR are the chemical potentials of the leads. In the WBL, the equations 
of motion for the non-equilibrium Green functions .u(τ, t) and .v(τ, t) are reduced 
to 

.
d

dt
u(τ, t0) + i

h̄
ε0(τ )u(τ, t0) + �

2h̄
u(τ, t0) = 0.. (13.105a) 

v(τ, t) =
∑
α

�α 

h̄2

∫ τ 

t0 

dt1

∫ t 

t0 

dt2

∫ ∞ 

−∞ 

dε

2π 
u(τ, t1)e− i 

h̄
ε(t1−t2) u∗(t2, t)  

e(ε−μα)/kBT0 + 1 
, (13.105b) 

where .� = �L + �R . The solution of the non-equilibrium Green functions can be 
solved analytically (set .t0 = 0) 

.u(t) = e−(iε0+ �
2 )t/h̄, . (13.106a)



316 13 Open Quantum Systems

v(t, t) = vst +
∫

dε

2π

�LfL(ε) + �RfR(ε) 
(ε0 − ε)2 + (�/2)2 (13.106b) 

×
{
e−�t/h̄ − 2e−�t/2h̄ cos[(ε0 − ε)t/h̄]

}
, 

where .� = �L + �R , .fL,R(ε) = 1/[e(ε−μL,R)/kBT0 + 1], and . vst is the solution of 
.v(t) at the steady-state limit: 

.vst =
∫

dω

2π

�LfL(ε) + �RfR(ε)

(ε0 − ε)2 + (�/2)2 . (13.107) 

The electron occupation in the dot can be calculated by Eq. (13.95) as  

.N(t) = ρ(1)(t) = e−�tρ(1)(0) + v(t), (13.108) 

where .N(0) = ρ(1)(0) is the initial electron occupation in the dot. In the steady-state 
limit, .Nst = vst. 

The electron transient current can also be analytically computed: 

.Iα(t) = Iα,st − e

h̄
�α[N(t) − Nst] (13.109) 

− 
e 
h̄ 

e
− �t 

2h̄

∫
dε

2π

�αfα(ε) 
(ε0 − ε)2 + (�/2)2

{
� cos[(ε0 − ε)t/h̄] 

− 2(ε0 − ε) sin[(ε0 − ε)t/h̄]
}
, 

where the steady-state current is 

.Iα,st = e

h̄
�α

∫
dε

2π

�L[fα(ε) − fL(ε)] + �R[fα(ε) − fR(ε)]
(ε0 − ε)2 + (�/2)2 . (13.110) 

It is also straightforward to calculate the net current: 

.Inet(t) = IL(t) − IR(t) (13.111) 

= Ist − 
e 
h̄ 

(�L − �R)[N(t) − Nst] 

− 
e 
h̄ 

e
− �t 

2h̄

∫
dε

2π

�LfL(ε) − �RfR(ε) 
(ε0 − ε)2 + (�/2)2 

×
{
� cos[(ε0 − ε)t/h̄] −  2(ε0 − ε) sin[(ε0 − ε)t/h̄]

}
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where the stationary net current is 

.Ist = 2e

h̄

∫
dε

2π

�L�R

(ε0 − ε)2 + (�/2)2
[fL(ε) − fR(ε)]. (13.112a) 

From the above, we see that once one solves the non-equilibrium Green functions 
from Eq. (13.42), the time dependence of all the physical quantities, such as the 
electron occupations in the central system and the currents flowing from each lead 
to the central region, can be obtained with the explicit dependence on the time. 
From Eq. (13.109), we also see that the initial current .Iα(0) = −�αN(0) which 
depends on the initial occupation of the dot. This result is consistent with the 
electron occupation in the dot, Eq. (13.108). For zero initial occupation, the initial 
current is zero. 

It is worth noting that some of the above results can also be obtained using the 
non-equilibrium Green function technique. In fact, we can easily find the connection 
with Keldysh’s non-equilibrium Green function technique which has been widely 
used in quantum transport theory and many-body dynamics. From Eq. (13.102), 
one sees that the transient current is completely determined by the time-correlation 
functions .gα(t, τ ) and .̃gα(t, τ ) of the waveguides plus the non-equilibrium Green 
function .u(τ, t) and .n(τ, t) of the central system. In fact, we have shown [196] that 
the functions .u(τ, t0), .u†(τ, t), and .n(τ, t) are related to the retarded, advanced, 
and lesser Green functions of the system in Keldysh’s non-equilibrium formalism 
[180, 182, 183]: 

.uij (t1, t2) = θ(t1 − t2)〈[ai(t1), a
†
j (t2)]〉 ≡ iGr

ij (t1, t2), . (13.113a) 

u
† 
ij (t1, t2) = θ(t2 − t1)〈[ai(t1), a† 

j (t2)]〉 ≡ −iGa 
ij (t1, t2), . (13.113b) 

nij (t1, t2) = 〈a† 
j (t2)ai(t1)〉 ≡ −iG< 

ij (t1, t2). (13.113c) 

The time-correlation functions .gα(t, τ ) and .̃gα(t, τ ) correspond to the retarded and 
lesser self-energy functions that arose from the couplings between the system and 
the reservoirs: 

.gαij (t1, t2) = i�r
αij (t1, t2), . (13.114a)

g̃αij (t1, t2) = −i�< 
αij (t1, t2). (13.114b) 

The explicit form of these self-energy functions is simply given by Eq. (13.93). 
Explicitly, the equation of motion (13.42a) for .u(τ, t0) obtained in the master 

equation formulation can be rewritten as 

.

{ d

dτ
− i

h̄
εS(t)

}
Gr (τ, t0) +

∫ τ

t0

�r (τ, τ ′)Gr (τ ′, t0)dτ ′ = δ(τ − t0). (13.115)
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This is just the standard Kadanoff-Baym equation for the retarded Green function. 
The advanced Green function obeys the relation: .Ga(t1, t2) = [Gr (t2, t1)]† by the 
definition. The central and also the most difficult part in the non-equilibrium Green 
function technique is the lesser Green function .G<(τ, t). The lesser Green function 
.G<(t1, t2) fully determines the quantum kinetic theory of non-equilibrium system. 
From Eq. (13.101), we have solved already the exact analytical solution of the lesser 
Green function: 

.G<(τ, t) = Gr (τ, t0)G
<(t0, t0)G

a(t0, t) (13.116) 

+
∫ τ 

t0 

dτ1

∫ t 

t0 

dτ2 G
r (τ, τ1)�

< (τ1, τ2)G
a (τ2, t),  

where .G<(t0, t0) = n(t0, t0) is the initial particle distribution in the system. 
In the standard Green function formulation, one usually takes the initial time 

.t0 → −∞ such that the first term will disappear. This ignores the information 
of the initial state dependence in quantum transport, an important effect on non-
Markovian memory dynamics. Thus, the resulting lesser Green function obtained in 
the mesoscopic electron transport contains only the last term in Eq. (13.116) [214]. 
In other words, Eq. (13.116) gives the exact and general solution for the lesser Green 
function in mesoscopic systems. With the above relations and solutions, the transient 
transport current, Eq. (13.102), can be re-expressed as 

.Iα(t) = 2eRe
∫ t

t0

dτTr[�r
α(t, τ )G<(τ, t) + �<

α (t, τ )Ga(τ, t)]. (13.117) 

This reproduces the Meir-Wingreen formula for transport current in the non-
equilibrium Green function technique, the latter has been widely used in the 
investigation of various electron transport phenomena in mesoscopic systems [214] 
in which the extension that the initial state effect is explicitly included [196]. 

Furthermore, if we were to take the steady-state limit (.t → ∞), we can 
reproduce the generalized Landauer-Büttiker formula of the transport current. Using 

the Laplace transformation, .f (z) = ∫ ∞
t0

dte
i
h̄
z(t−t0)f (t), the system-environment 

correlation function .gα(t − t ′) and the retarded Green function .u(t, t ′) give 

.gα(ε) = i

h̄

∫
dε′

2π

�α(ε′)
ε − ε′ + i0+ = i�r

α(ε), . (13.118a) 

u(ε) = ih̄

ε − ε − �r (ε) 
= iGr (ε) (13.118b) 

The advanced Green function is simply given by .ū(ω) = −iGa(ω) = u†(ω). 
Furthermore, for the correlation Green function .v(t, t) at .t → ∞, its Laplace
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transformation gives 

.v(ε) = u(ε)̃g(ε)u†(ε) = −iGr (ε)�<(ε)Ga(ε) = −iG<(ε). (13.119) 

Here .̃g(ε) = −i�<(ε). Thus, in the steady-state limit .t → ∞, substituting the 
above results into Eq. (13.102), we obtain the steady-state transport current: 

.Iα,st = ie

h̄

∫
dε

2π
Tr

(
�α(ε)

[
G<(ε) + fα(ε)

{
Gr (ε) − Ga(ε)

}])
. (13.120) 

This reproduces the steady-state current in terms of the non-equilibrium Green 
functions in the frequency domain that has been widely used. When we consider 
specifically a system coupled with left (source) and right (drain) electrodes, i.e., 
.α = L and R, respectively, and also assume that the spectral densities for the left 
and right leads have the same energy dependence, .�L(ω) = λ�R(ω), where . λ is a 
constant, then the steady-state net current flowing from the left to the right lead is 
given by 

.Ist = 2e

h̄

∫
dε

2π

[
fL(ε) − fR(ε)

]
T (ε), (13.121) 

where 

.T (ε) = Tr
{ �L(ε)�R(ε)

�L(ε) + �R(ε)
Im[Ga(ε)]

}
, (13.122) 

is the transmission coefficient. This is the generalized Landauer-Büttiker formula. 

13.7 Quantum Thermodynamics 

The classical thermodynamics is built on the hypothesis of equilibrium. Specifically, 
a macroscopic system at equilibrium is completely described by relation between 
the internal energy U and a set of other extensive parameters: the entropy S, the  
volume V , the particle number N , the magnetic moment . M , etc.  

.U = U(S, V,N,M, · · · ). (13.123) 

This relation obeys the extremum principle of either maximizing the entropy or 
minimizing the internal energy (the second law of thermodynamics) and is known 
as the fundamental equation of thermodynamics. The thermodynamic temperature 
T , the pressure P , the chemical potential . μ, and the magnetic field . B are defined 
by the first derivative of the internal energy with respect to the entropy, the volume,
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the particle number, and the magnetic moment, respectively, from this relation: 

.T = ∂U

∂S

∣∣∣∣
V,N,M,···

, P = ∂U

∂V

∣∣∣∣
S,N,M,···

, (13.124) 

μ = 
∂U 
∂N

∣∣∣∣
S,V,M,··· 

, B = 
∂U 
∂M

∣∣∣∣
S.V,N 

. 

As a result, the relation (13.123) directly leads to the first law of thermodynamics: 

.dE = T dS + PdV + μdN + BdM + · · · . (13.125) 

And the first derivatives in Eq. (13.124) give a complete set of equations of state in 
classical thermodynamics. Furthermore, the second derivatives characterize various 
intrinsic properties of individual macroscopic systems, such as the specific heat, 
compressibility, magnetic susceptibility, etc. 

Microscopically, all thermodynamic parameters at equilibrium can be obtained as 
an average over all possible microstates with equal probability (known as the ergodic 
hypothesis) at fixed energy and particle number (known as the microcanonical 
ensemble). Alternatively, they can be alternatively determined from the probability 
distribution .{pi} for each microstate which is determined by maximizing Shannon 
entropy, 

.S = −k
∑

i

pi ln pi (13.126) 

under the condition of fixed average energy (the canonical ensemble) or both 
the fixed average energy and the average particle number (the grand canonical 
ensembles). This is also a natural result of the second law of thermodynamics. 
Furthermore, maximizing the Shannon entropy under the condition of fixed average 
energy, and maybe also the average particle number, will determine the equilibrium 
probability distribution in terms of the Gibbs state, 

.ρth =
⎧⎨
⎩

1
Z

e−βH , canonical ensemble;
1
Z

e−β(H−∑
i μiNi), grand canonical ensemble,

(13.127) 

where Z is the partition function coming arising from the normalized condition 
.trρth = 1, .β = 1/kT is the inverse temperature of the reservoir, and H is the 
Hamiltonian of the system. Thus, the internal energy, the entropy, the particle 
numbers, the magnetic moment, etc. can systematically be calculated from the 
thermal equilibrium state . ρth : 

.U = Tr[Hρth ], S = −k Tr[ρth ln ρth ].. (13.128a) 

N = Tr[ N̂ρth ], M = Tr[ M̂ρth ], · · ·  . (13.128b)
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The fundamental equation of thermodynamics is microscopically manifested from 
these thermodynamic quantities. In the energy basis, the entropy in Eq. (13.128a) is  
identical to the Shannon entropy. 

Equations (13.123)–(13.128a) is the axiomatic description of thermodynamics 
and statistical mechanics, from which all the thermodynamical phenomena can 
be determined naturally [219]. For more than a century, it has been a significant 
challenge as to whether and how the thermodynamics and statistical mechanics 
can be deduced from the dynamics of the quantum systems. The equilibrium 
hypothesis states that over a sufficiently long time period, a given macroscopic 
system can always reach thermal equilibrium with its environment (reservoir), 
and the corresponding equilibrium statistical distribution does not depend on its 
initial state. This process is known as thermalization. Solving the problem of 
thermalization within the framework of quantum mechanics has been a dream 
for many physicists and is also the foundation in the investigation of quantum 
thermodynamics and non-equilibrium statistical mechanics [220]. 

Clearly, thermalization relies on a profound understanding of the quantum 
dynamics of systems under the interactions with their environments. In the last 
couple of decades, there has been an attempt to develop a thermodynamics for-
mulation which is far from equilibrium for the nanoscale or atomic-scale quantum 
systems, in which the particle number is much less than the order of .1023. If one 
could develop such a thermodynamics for arbitrary small quantum systems, and 
prove the consistency with equilibrium thermodynamics, then the foundation of 
thermodynamics can be established. This is a newly emerged research field now 
in the literature which is known as quantum thermodynamics. The aim of quantum 
thermodynamics is also to develop the thermodynamics within the framework of 
quantum principle that is generally valid for arbitrary dynamics of quantum systems 
interacting with their arbitrary environments. Recently, this arduous task has been 
completed by one of the authors [210]. 

Specifically, based on the exact master equation and the exact solution of the 
reduced density matrix given in the previous sections, we can show how the system 
is thermalized under the time evolution of quantum mechanics. The general solution 
of the non-equilibrium Green functions presented in Sect. 13.5 shows that, if there 
are no localized bound states (modes), the non-equilibrium Green functions in the 
steady-state limit become 

. lim
t→∞ u(t, t0) = 0 , . (13.129a) 

lim 
t→∞ 

v(t, t) =
∫

dε

2π 
f (ε,  T0)D(ε), (13.129b) 

where . T0 is the initial temperature of the environment at time . t0. This solution is 
valid for arbitrary continuous spectral density matrix of the reservoir .J ij (ε) that 
covers every point of the whole energy frequency domain. Then the coefficients 
in the propagating function of the reduced density matrix, Eq. (13.46), are largely
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simplified at the steady-state limit .t → ∞, 

.K1(t, t0) = 0, K2(t) = v(t, t)

1 ± v(t, t)
, K3(t, t0) = 1. (13.130) 

As a result, the propagating function of the reduced density matrix, Eq. (13.46), is 
reduced to 

. lim
t→∞J (ξf , ξ ′

f , t; ξ0, ξ
′
0, t0) = lim

t→∞
(
det[1 ± v(t, t)])∓1 (13.131) 

× exp
{

± ξ ′
0 

† 
ξ0 + ξ† 

f 
v(t, t) 

1 ± v(t, t) 
ξ ′

f

}
. 

Substituting this result into Eq. (13.16), we obtain the exact steady-state reduced 
density matrix: 

. lim
t→∞〈ξf |ρS(t)|ξ ′

f 〉 = lim
t→∞

∫
dμ(ξ0)dμ(ξ ′

0)ρS(ξ0, ξ
′
0, t0) (13.132) 

×(
det[1 ± v(t, t)])∓1 exp

{
± ξ ′

0 
† 
ξ0 + ξ† 

f 
v(t, t) 

1 ± v(t, t) 
ξ ′

f

}
. 

Notice the normalization condition 

.

∫
dμ(ξ0)dμ(ξ ′

0)ρS(ξ0, ξ
′
0, t0) exp

{
± ξ ′

0
†
ξ0

}
= 1, (13.133) 

we have 

. lim
t→∞〈ξf |ρS(t)|ξ ′

f 〉 = lim
t→∞

(
det[1 ± v(t, t)])∓1〈ξf | v(t, t)

1 ± v(t, t)
ξ ′

f 〉. (13.134) 

This shows that as a consequence of thermalization, the steady-state reduced density 
matrix is independent of its initial states. Equation (13.134) can be rewritten in an 
operator form, 

. lim
t→∞ ρS(t) = lim

t→∞
( 1

det[1 ± v(t, t)]
)±1

exp
{
a†

(
ln

v(t, t)

1 ± v(t, t)

)
a
}
, (13.135) 

where .a ≡ (a1, a2, · · · , aN)T is a one-column matrix operator. This is the exact 
steady-state solution of the exact master equation (13.52). 

As one can see, the exact steady-state solution (13.135) is indeed a generalized 
Gibbs-type state. Here .limt→∞ v(t, t) is the steady-state one-particle density matrix 
of Eq. (13.95). Its diagonal elements are the particle occupations (the particle
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statistical distributions) at each corresponding energy level: 

.limt→∞vij (t, t) = nij (t) ≡ TrS[a†
i aj ρS(t)] = ρ

(1)
ij (t). (13.136) 

Thus, the non-equilibrium internal energy, entropy, and particle number can be 
defined by 

.US(t) ≡ TrS[Hr
S(t)ρS(t)] =

∑
ij

εr
ij (t)nij (t), . (13.137a) 

NS(t) ≡ TrS

∑
i 

[a† 
i aiρS(t)]=

∑
i 

nii (t), . (13.137b) 

SS(t) ≡ −k TrS[ρS(t) ln ρS(t)]. (13.137c) 

Here .Hr
S(t, t0) is the renormalized system Hamiltonian obtained in the exact master 

equation (13.52). The reduced density matrix .ρS(t) of the system is determined 
by the master equation (13.52). Both of them contain all the information of the 
system under the influence of the environment. This provides the dynamical descrip-
tion of thermodynamics under the fundamental principle of quantum mechanics. 
Meanwhile, the quantum thermodynamic quantities defined by Eq. (13.137) may be 
related to each other and form the fundamental equation for quantum thermody-
namics: .US(t) = US(ε

r
s (t), SS(t), NS(t)). Physically, as we see, energy levels play 

a similar role as the volume in quantum mechanics [221]. Thus, 

.dUS(t)=dWS(t) + T r(t)dSS(t) + μr(t)dNS(t). (13.138) 

This is the first law of non-equilibrium quantum thermodynamics. 
Explicitly, the quantum work .dWS(t) done on the system has arisen from the 

changes of energy levels: 

.
dWS(t)

dt
=TrS

[
ρS(t)

dHr
S (t)

dt

]
=

∑
ij
nij (t)

dεr
ij (t)

dt
. (13.139) 

The quantum heat .dQS(t) (also including the chemical work .dWc
S (t)) comes from 

the changes of particle distributions and transitions (the one-particle density matrix; 
see Eq. (13.136)): 

.dQS(t) + dWc
S (t)=

∑
ij
εr

ij (t)dnij (t) =T r(t)dSS(t)+μr(t)dNS(t). (13.140) 

It indicates that .dnij (t) characterizes both the state information exchanges (entropy 
production) and the matter exchanges (chemical process for massive particles) 
between the systems and the reservoir. For photon or phonon systems, particle 
number is the number of energy quanta . ̄hω. In this case, both are not a matter, 
and therefore their respective chemical potential as expected vanishes; .μr(t)=0.
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Based on the above formulation, we can now define the renormalized temperature 
and renormalized chemical potential by 

.T r(t) = ∂US(t)

∂SS(t)

∣∣∣∣
εr (t),NS(t)

, μr(t) = ∂US(t)

∂NS(t)

∣∣∣∣
εr (t),SS(t)

. (13.141) 

The renormalization means that all the thermal quantities are renormalized under the 
influence of environment when the system and the environment strongly coupled to 
each other [210]. As a result, Eq. (13.135) can be also written as the standard Gibbs 
state: 

. lim
t→∞ ρexact

S (t) = 1

Zr
exp

{−βr(Hr
S −μrN̂S)

}
. (13.142) 

Here .N̂S = ∑
i a

†
i ai is the particle number operator of the system. It shows that, 

by introducing the renormalized Hamiltonian .Hr
S (t), the renormalized temperature 

.T r(t), and the renormalized chemical potential .μr(t) at steady state, we derive the 
quantum thermodynamic Gibbs state, Eq. (13.142), for all the coupling strengths 
between the system and the environment. Because the exact solution of the steady 
state is the standard Gibbs state, classical thermodynamic laws are all preserved in 
quantum thermodynamics. In this manner, the theory of quantum thermodynamics 
is complete. 

The above formulation of quantum thermodynamics has gone far beyond the 
classical thermodynamics based on equilibrium hypothesis, namely, the system 
is very weakly coupled with its environment. We can reproduce the classical 
thermodynamics under the weak coupling limit. Explicitly, when the coupling 
strength between the system and the environment is very weak, then the spectral 
density .J (ε) and the energy shift .�(ε) both tend to vanish, i.e., 

.J (ε) → 0 , �(ε) → 0 . (13.143) 

Following, the spectrum of the retarded Green function is given by 

.D(ε)= 1

ε−εS −�(ε)+iJ (ε)/2
J (ε)

1

ε−εS −�(ε)−iJ (ε)/2
, (13.144) 

One can find that under the condition (13.143), 

.D(ε) → 2πδ(εI − εS) . (13.145) 

That is, when the system-environment coupling becomes very weak, the spectrum 
broadening and energy shift of the system energy levels can be negligible, making 
the spectrum of the system converging to the original one. As a consequence 
of Eqs. (13.145) and (13.129b), .v(t, t) approaches the Bose-Einstein/Fermi-Dirac
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distribution, i.e., 

. lim
t→∞ v(t, t) → f (εS, T0) = 1

e(εS−μ)/kBT0 ∓ 1
. (13.146) 

Thus, Eq. (13.142) converges to 

. lim
t→∞ ρS(t) = 1

Tr[e−β0a†(εS−μ)a] exp
{−β0a

†(εS − μ)a
}
. (13.147) 

This is exactly the Gibbs state in the grand canonical ensemble of classical thermo-
dynamics with the original system Hamiltonian .HS = a†εSa at the initial inverse 
temperature .β0 = 1/kBT0 and initial chemical potential . μ0 of the environment. 
This is a rigorous proof that in the weak coupling limit, the exact evolution of an 
open quantum system would reproduce the Gibbs thermal state of the equilibrium 
statistical mechanics in the steady-state limit. All the classical thermodynamic 
quantities can be determined from the Gibbs state. 

Finally, we will apply the above general theory of quantum thermodynamics to a 
bosonic system, such as a nanocavity or a nanomechanical resonator, .HS = h̄ωSa

†a, 
which can strongly couple to a thermal bath. The bath is described by the Ohmic 
spectral density .J (ω) = 2πηω exp(−ω/ωc). The exact master equation (13.52) is  
simply reduced to 

. 
d

dt
ρS(t) = 1

ih̄

[
Hr

S (t), ρS(t)
]+γ (t, t0)

{
2aρS(t)a

†−a†aρS(t)−ρS(t)a
†a

}
(13.148) 

+γ̃ (t,  t0)
{
a†ρS(t)a+aρS(t)a

†−a†aρS(t)−ρS(t)aa†}. 
with the renormalized Hamiltonian 

.Hr
S (t) = h̄ωr

S(t, t0)a
†a. (13.149) 

The reduced density matrix can also be exactly solved from Eq. (13.48) in the  
coherent state representation which is reduced to 

.〈ξf |ρS(t)|ξ ′
f 〉 = (

det[1 ± v(t, t)])∓1
∫

dμ(ξ0)dμ(ξ ′
0)〈ξ0|ρS(t0)|ξ ′

0〉 (13.150) 

exp
{
ξ∗
f K1(t, t0)ξ0 + ξ ′∗

0 K
∗
1 (t, t0)ξ ′

f ± ξ ′∗
0 K3(t, t0)ξ0 + ξ∗

f K2(t)ξ
′
f

}
. 

for a single-mode bosonic system. All the coefficients in the master equa-
tion (13.148) and in the reduced density matrix (13.150) are determined by the
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non-equilibrium Green functions .u(t, t0) and .v(t, t): 

.ωr
S(t, t0) = −Im

[ u̇(t, t0)

u(t, t0)

]
, γ (t, t0) = −Re

[ u̇(t, t0)

u(t, t0)

]
, . (13.151a)

γ̃ (t,  t0) = v̇(t, t) − 2v(t, t)Re
[ u̇(t, t0) 
u(t, t0)

]
.. (13.151b) 

K1(t) = 
u(t, t0) 

1 + v(t, t) 
, K2(t) = 

v(t, t) 
1 + v(t, t) 

, K3(t) = 1 − 
|u(t, t0)|2 

1 + v(t, t) 
. 

(13.151c) 

And .u(t, t0) and .v(t, t) have been solved analytically in Sect. 13.5. 
Assume that the system is initially in an arbitrary state 

.ρS(t0) =
∞∑

l,m=0

ρlm|l〉〈m| (13.152) 

which can be either a pure state if .ρlm = clc
∗
m or a mixed state if .ρlm �= clc

∗
m, 

where . cl is a complex number. The time evolution of the reduced density matrix 
can be solved either from the exact master equation (13.148) or from the exact 
solution (13.150) in the coherent state representation [208]. The result is 

.ρS(t) =
∞∑

l,m=0

ρlm

min{l,m}∑
k=0

dkA
+
lk(t)ρ̃ [v(t, t)]Amk(t) (13.153) 

where 

.ρ̃ [v(t, t)] =
∞∑

n=0

[v(t, t)]n
[1 + v(t, t)]n |n〉〈n|, . (13.154a) 

A
† 
lk(t) = 

√
l! 

(l − k)!√k!
[ u(t, t0) 

1 + v(t, t) 
a†

]l−k 
, . (13.154b) 

dk =
[
1− 

|u(t, t0)|2 

1 + v(t, t)
]k 

. (13.154c) 

It can be shown that when .η < ηc = ωS/ωc, the localized mode does not exist 
[198]. When the system reaches the steady state, we have .limt→∞ u(t, t0) → 0 (see 
Fig. 13.4). As a result, 

. lim
t→∞ ρS(t) = lim

t→∞

∞∑
n=0

[v(t, t)]n
[1 + v(t, t)]n+1 |n〉〈n| (13.155) 

= lim 
t→∞ 

1 

1 + v(t, t) 
e

ln
[

v(t,t) 
1+v(t,t)

]
a†a 

,
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Equation (13.155) is the exact solution at steady state for arbitrary system-reservoir 
coupling strengths .η < ηc. 

To seek the new physics in the quantum thermodynamics, we shall look at the 
average particle occupation in the system which can be calculated exactly either 
from the master equation (13.148), .n(t) ≡ TrS[a†aρS(t)], or from the Heisenberg 
equation of motion directly: .n(t) ≡ TrSE[a†(t)a(t)ρtot(t0)]. Both calculations give 
the same result: 

.n(t) = u∗(t, t0)n(t0)u(t.t0) + v(t, t). (13.156) 

Its steady-state solution is given by 

. lim
t→∞ n(t) = lim

t→∞ v(t, t) =
∫

dω

2π
D(ω)n(ω, T0), (13.157) 

where .D(ω) = J (ω)

[ω−ωs−�(ω)]2+J 2(ω)/4
describing the system spectrum broadening 

and .�(ω) = P
[∫

dω′ J (ω′)
ω−ω′

]
gives the system frequency shift. 

Figure 13.5a (the red dashed line) is the exact solution .n(t → ∞) of Eq. (13.157) 
as a function of the coupling strength . η for the Ohmic spectral density. As one 
can see, except for the very weak coupling regime .η � ηc, .n(t → ∞) deviates 
significantly from the Bose-Einstein distribution .n(ωS, T0) (the green dot line) 
as . η increases. Physically, this deviation comes from the strong system-reservoir 
coupling which changes the intrinsic thermal property of the system when we go 
beyond the classical thermodynamics. Note that the classical thermodynamics is 
valid when the system is very weakly coupled to the bath, as we have discussed in 
the beginning of this section. 

The first change we observed is induced by the strong system-reservoir coupling 
which is the system energy, which is shifted as we have shown explicitly in the 
exact master equation (13.148). In other words, the Hamiltonian of the system is 
renormalized from .HS to .Hr

S with the energy .h̄ωS being shifted to .h̄ωr
S when we 

trace over all the environmental state. Due to the non-negligible system-reservoir 
coupling effect, the renormalized frequency .ωr

S = ωr
S(t → ∞) can be calculated 

exactly from Eq. (13.151), and the result is presented in Fig. 13.5b. The blue dashed-
dot line in Fig. 13.5a is the particle occupation with the renormalized energy: 
.n(ωr

S, T0) = 1/[eh̄ωr
S/kBT0 − 1]. It shows that .n(ωr

S, T0) changes with increasing 
. η, similar to the exact solution .n(t → ∞). Of course, it must be noted that there is 
still obvious difference between them. 

Secondly, the non-negligible system-reservoir coupling effect also changes the 
solution of the reduced density matrix. This is shown by Eqs. (13.155) and (13.157) 
which are all related to the spectral broadening .D(ω) and the coupling strength . η
explicitly. The change of the energy implies the change of the system temperature. 
In other words, the system and the reservoir in the steady state have a different tem-
perature other than the initial temperature of the reservoir . T0. This new temperature 
characterizes the equilibrium of the system and the reservoir at the steady state. We
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Fig. 13.5 (a) The steady-state particle distribution as a function of coupling strength . η/ηc. The  
exact solution .n(t → ∞) of Eq. (13.157) (red dashed line) is identical to .n(ωr

s , T
r ) (black dot 

line). The green dot line and blue dashed-dot line are .n(ωs, T0) and .n(ωr
s , T0), respectively. (b) 

The steady-state values of the renormalized frequency and renormalized temperature as a function 
of the coupling. (c)–(d) The internal energy and entropy production in time for different coupling 
strengths .η/ηc = 0.3, 0.5, 0.8 (the blue solid, green dashed, red dot lines). Other parameters: 
.ωc = 5ωs , .T0 = 10h̄ωs , .ηc =ωs/ωc [210] 

shall refer to it as the renormalized temperature . T r . It can be determined by the 
change of the internal energy with respect to the thermal entropy of the system. 
The internal energy and the entropy can both be calculated from the renormalized 
Hamiltonian in the exact master equation (13.148), and its solution (13.153), as 
defined by Eq. (13.137) is  

. US(t) ≡ TrS[Hr
S(t)ρS(t)] = ωr

S(t)n(t), SS(t) =−kB TrS[ρS(t) ln ρS(t)].
(13.158) 

Thus, a renormalized temperature is given by Eq. (13.141): 

.T r(t) = ∂US(t)

∂SS(t)

∣∣∣∣
ωr

S

. (13.159) 

The chemical potential is zero for the massless bosons, as expected. 
Furthermore, the change of the internal energy in time has two parts, correspond-

ing to quantum work done on the system and the quantum heat associated with the 
entropy production: 

. dUS(t) =TrS[ρS(t)dHr
S(t)] + TrS[Hr

S(t)dρS(t)]
= dW(t) + dQ(t) = dW(t) + T r(t)dSS(t). (13.160)
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Because the exact steady-state solution Eq. (13.155) is a Gibbs state, it can be also 
expressed as 

.ρS =
∞∑

n=0

[n(ωr
S, T

r )]n
[1 + n(ωr

S, T
r )]n+1

|n〉〈n|= 1

Zr
e−βrHr

S , (13.161) 

where .n(ωr
S, T

r ) = 1
eh̄ωr

S/kT r −1
is the Bose-Einstein distribution and . Zr =

TrS[e−βrHr
S ] with .βr = 1/kT r and .T r = T r(t → ∞) is the renormalized 

equilibrium temperature at steady state (see Fig. 13.5b). We plot .n(ωr
S, T

r ) with the 
renormalized energy and temperature (the black dot line) in Fig. 13.5a. Remarkably, 
it precisely reproduces the exact solution Eq. (13.157), i.e., .n(t →∞) = n(ωr

S, T
r ). 

This is a most rigorous proof that strong coupling quantum thermodynamics must 
be defined in terms of the renormalized Hamiltonian and temperature given above. 

Furthermore, in the very weak coupling regime . η � ηc, we have .�(ω)→ 0 and 
.D(ω) → δ(ω − ωS) so that in the steady state, Eq. (13.157) is directly reduced to 
.n → n(ωS, T0), and 

.ρS =
∞∑

n=0

[n(ωS, T0)]n
[1+n(ωS, T0)]n+1

|n〉〈n|= 1

Z
e−β0HS . (13.162) 

It recovers the expected solution in the weak coupling regime. Figure 13.5 also 
shows that .h̄ωr

S → h̄ωS and .T r → T0 at very weak coupling. Thus, the equilibrium 
hypothesis of thermodynamics and statistical mechanics is proven rigorously from 
the dynamics of quantum systems, which solves the long-standing problem lasted 
for more than hundred years for the foundation of statistical mechanics and 
thermodynamics [220]. On the other hand, for the very strong coupling . η > ηc, the  
system exists a dissipationless localized bound state (localized mode) at frequency 
.ωb = ωs+�(ωb) with .J (ωb) = 0. Then, the asymptotic value of the Green function 
.u(t → ∞, t0) never vanishes. As a result, the steady state of the reduced density 
matrix Eq. (13.153) cannot be reduced to Eq. (13.155). It always depends on the 
initial state distribution .ρlm of Eq. (13.152). In other words, the system cannot be 
thermalized with the reservoir [210], [?]. This corresponds to a realization of the 
thermalization to many-body localization transition that is currently a hot topic in 
research. 

The theory of open quantum systems and quantum thermodynamics is an 
ongoing research field. The results presented in this chapter are solved from the 
fundamental principle of quantum mechanics by extending the system to include 
environment as a closed system. When the system involves many-body interaction, 
its dynamics should become much more complicated. With the rapid development 
of quantum science and technology which mainly deals with the dynamics of open 
quantum systems, let us witness the new progress in this emerging research field in 
the near future.
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Exercises 

13.1. Apply the coherent states path integral (13.11) to the single-mode harmonic 

oscillator to show that 〈z′|e− i 
h̄ H(t−t0)|z〉 is fully determined by the end-point 

boundary term in Eq. (13.11). 

13.2. Derive Eq. (13.34) from Eq. (13.29). 

13.3. Taking a time derivative to Eq. (13.48) to derive the exact master equa-
tion (13.52). (hint: use the D-algebra of the creation and annihilation operators in 
the coherent state representation). 

13.4. Calculate the dissipation and fluctuation coefficients in the second-order 
perturbation expansion for the sub-Ohmic spectral density s = 1/2, and make a 
comparison with the exact solution given in Fig. 13.4. 

13.5. Consider a quantum dot with two energy levels (serves as a charge qubit) 
coupled to two leads, the source and the drain at initial temperatures TL,R and 
chemical potential μL,R , and apply a bias voltage V (t)  to the two leads to solve 
the exact master equation (13.89) to see how to use the bias  V (t)  to control the 
qubit states. Also explore the heating transfer in this quantum device. 

13.6. Consider a nano-resonator interacting with a thermal bath and initially in a 
coherent state |α〉, solve the master equation (13.148) to find the exact solution of 
the reduced density matrix, and study its thermalization (the steady-state limit).



AIntroduction of Lie Group

A.1 Lie Group and Lie Algebra

What are Lie groups and Lie algebras? To illustrate them, one needs to start by
introducing the concept of a group. A group is a set G equipped with a binary
operation .f : G × G → G which obeys the four axioms: (1) If a, .b ∈ G, .f (a, b) ∈
G (closure); (2) If .a, b and .c ∈ G, .f (f (a, b), c) = f (a, f (b, c)) (associativity);
(3) there is an identity element e, such that for all .a ∈ G, .f (e, a) = f (a, e) = g

(identity); (4) every element .a ∈ G has an inverse .a−1 ∈ G such that .f (a, a−1) =
f (a−1, a) = e (invertibility).

As an example, one may consider the symmetries of a square, which is a set
with four elements: .{R0, Rπ/2, Rπ ,R3π/2}, where .Rθ is an anticlockwise rotation
of the square by .θ degree. Let the binary operation .f (a, b) be first applying the
anticlockwise rotation a and then applying the anticlockwise rotation b; one can
immediately show that the set .{R0, Rπ/2, Rπ ,R3π/2} is a group with the following
group Table A.1:

In linear algebra, one represents linear transformations in vector spaces via
matrices. Similarly, one may represent symmetrical transformations of a group as
linear operators in vector spaces. Here, a representation of a group G is mapping
.g : G → V onto a vector space V , which obeys the following properties: (1) .g(e) =
I , with I being the identity operator of the vector space; (2) .g(a)g(b) = g(f (a, b))

for .a, b ∈ G and f being the binary operation for G.
As an example, the representation of the group of rotation symmetries of a square

onto the vector space .R
2 has the form

.g(R0) =
(

1 0
0 1

)
, g(Rπ/2) =

(
0 −1
1 0

)
, (A.1)

g(Rπ) =
(−1 0

0 −1

)
, g(R3π/2) =

(
0 1

−1 0

)
.
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Table A.1 Group table of
the rotation symmetries of a
square

.R0 .Rπ/2 .Rπ .R3π/2

.R0 .R0 .Rπ/2 .Rπ .R3π/2

.Rπ/2 .Rπ/2 .Rπ .R3π/2 .R0

.Rπ .Rπ .R3π/2 .R0 .Rπ/2

.R3π/2 .R3π/2 .R0 .Rπ/2 .Rπ

We now introduce the concept of algebra. An algebra V over a field is a vector
space equipped with a bilinear product .f : V × V → V , where a field is a set
equipped with the operations of addition, subtraction, multiplication, and division.
The most commonly used fields are the fields of real numbers and complex numbers.
Notice that the field of complex numbers can also be regarded as an algebra over
the vector space .R

2, where the bilinear product is given by the product of complex
numbers .(a + ib) · (c + id).

In our previous example, the group of rotation symmetries of a square contains
finite elements. However, as most important symmetries in physics are continuous
symmetries, one needs to consider groups of continuous symmetries, whose ele-
ments are continuous or smooth functions of some variables.

A Lie group is set G with two structures: .G = (G, ·) is a group and G is a
smooth manifold, such that the multiplication .· : G × G → G, (a, b) �→ ab and
inversion .()−1 : G → G, a �→ a−1 are smooth maps. If one replaces the word
smooth manifold with topological space equipped with continuous multiplication
and inversion in the definition of a Lie group, one obtains a topological group.
Remarkably, the requirement of smoothness in the definition of a Lie group is
redundant. A highly nontrivial result (Gleason-Yanabe theorem [222], a positive
resolution to Hilbert’s fifth problem) asserts that if G is a topological group and is
locally Euclidean, then G is isomorphic to a Lie group.

As an example, the symmetry of a unit circle is that its shape is invariant under
rotations by any angle .θ . One may represent these rotations in .R

2 by the following
.2 × 2 matrix:

.R(θ) ≡
(

cos θ − sin θ

sin θ cos θ

)
, (A.2)

where .θ ∈ R/2πZ. It describes a compact connected Lie group, the special orthog-
onal group SO(2,.R), which is diffeomorphic to a unit circle. The multiplication
of elements of SO(2,.R) corresponds to addition of the angles, i.e., .R(θ1)R(θ2) =
R(θ1 + θ2), and the inverse of an element corresponds to taking the opposite angle,
i.e., .R−1(θ) = RT(θ) = R(−θ). As both the multiplication and inversion are
smooth maps, SO(2,.R) is a Lie group, containing both the group and the smooth
manifold structures.

As another example, the isospin symmetry in particle physics is described by
the special unitary group of order 2, SU.(2,C), which is the group of .2 × 2
unitary matrices with complex entries. Here, a unitary matrix means a matrix with
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determinant 1 in which its conjugate transpose equals its inverse. The SU.(2,C)

group can be written explicitly as

.SU(2,C) ≡
{(

α −β∗
β α∗

)
| α, β ∈ C, |α|2 + |β|2 = 1

}
. (A.3)

The verification of SU.(2,C) being a group is left to readers. Let .(α, β) �→ (a +
bi,−c + di) be a bijection from .C

2 to .R
4. Then the equation .|α|2 + |β|2 = 1

becomes .a2+b2+c2+d2 = 1. This is exactly the equation of the three-dimensional
unit sphere .S3. As SU.(2,C) has both the group structure and the smooth manifold
structure (the unit sphere .S3), it is a Lie group.

In fact, the general linear group GL.(n,R), the group of all invertible .n × n

matrices with real entries, forms a Lie group. It forms a group, as the product of
two invertible matrices is invertible, the inverse of an invertible matrix is invertible,
and the identity matrix represents the identity element of the group. To show that
the general linear group is a smooth manifold, one needs a fact: the space of .n × n

matrices .Mn(R) is isomorphic to .R
n2

. It can be directly verified by assigning a
bijection from a given .n × n matrix .A = (aij ) to the .n2-tuple

.(a11, a12, . . . , a1n, a21, a22, . . . , a2n, . . . , an1, an2, . . . , ann). (A.4)

This bijection naturally induces a metric .d(A,B) ≡
√∑

i,j (aij − bij )2 on .Mn(R),

which makes .Mn(R) a topological manifold, a topological space which locally
resembles the Euclidean space. By definition, the general linear group GL.(n,R) ≡
{A ∈ Mn(R)| det A �= 0} consists of all the .n × n matrices with nonzero
determinants. The determinant function .det A ≡ ∑

σ∈Sn
sgn(σ )

∏n
i=1 ai,σ (i) is a

sum involving all permutations of the set .{1, 2, . . . , n} multiplied by the signature
of the permutation, which is a homogeneous polynomial in the entries of the matrix.
Hence, the determinant function .det : Mn(R) → R is a smooth function. Since
.R\{0} is an open subset of .R, the general linear group GL.(n,R) ≡ det−1(R\{0}) is
also an open subset of .Mn(R), which makes it a smooth manifold, as any open subset
of a manifold is a manifold. Finally, since GL.(n,R) has both the group structure and
smooth manifold structure, it is by definition a Lie group.

Using the same argument, it can be shown that both the general linear group over
the complex numbers GL.(n,C) and the general linear group over the quaternions
GL.(n,H) are Lie groups. As real Lie groups, the dimensions of GL.(n,R),
GL.(n,C), and GL.(n,H) are .n2, .2n2, and .4n2, respectively. In particular, GL.(n,R)

as a real manifold is not connected but rather consists of two connected com-
ponents: the matrices with positive determinants and the matrices with negative
determinants. One may denote the identity component as GL.

+(n,R) and the other
component as GL.

−(n,R), respectively. GL.
+(n,R) is also a Lie group of dimension

.n2.
We now focus on the orthogonal group in an arbitrary dimension n, denoted

as O.(n,R), which is the group of distance preserving transformations of a n-
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dimensional Euclidean space described by

.O(n,R) ≡ {R ∈ GL(n,R) | RTR = I }. (A.5)

It can be verified that the set O.(n,R) forms a group under matrix multiplication. In
order to prove that O.(n,R) has a smooth manifold structure, one may construct a
continuous map .f : Mn(R) → Sn(R), R �→ RTR, from the space of .n×n matrices
to its symmetric subspace. By construction, the orthogonal group is the preimage of
a single element .{I } in the symmetric subspace .Sn(R), O.(n,R) = f −1(I ). As f is
continuous, the inverse of a single element .{I }, which is obviously closed in .Sn(R),
is a closed subset in .Mn(R). According to the preimage theorem, it suffices to prove
that .{I } is a regular value of f , i.e., the differential map .dfR : Mn(R) → Sn(R) is
surjective for all orthogonal matrices .R ∈ f −1(I ). Let .X ∈ Mn(R) be an arbitrary
.n × n matrix; one obtains

.dfR(X) = lim
s→0

f (R + sX) − f (R)

s
(A.6)

= lim
s→0

(R + sX)T(R + sX) − RTR

s
= XTR + RTX.

This is a surjective map. Since if .Y ∈ Sn(R) is an arbitrary symmetric .n× n matrix,
one may always choose .X = 1

2RY , so that

.dfR(
1

2
RY) = 1

2
(Y TRTR + RTRY) = Y. (A.7)

Hence, according to the preimage theorem, the orthogonal group O.(n,R) is a
real sub-manifold of .Mn(R) of dimension .N = dim Mn(R) − dim Sn(R). As
.dim Mn(R) = n2 and .dim Sn(R) = n(n + 1)/2, the orthogonal group O.(n,R)

is a real sub-manifold of .Mn(R) of dimension .n(n − 1)/2. Since the orthogonal
group O.(n,R) has both the group structure and the smooth manifold structure, it is
a Lie group.

Similarly, one may consider the unitary group in an arbitrary dimension n,
denoted as U.(n,C), which is the group of transformations preserving the length
of complex vectors described by

.U(n,C) ≡ {U ∈ GL(n,C)|U†U = I }. (A.8)

As the product of two unitary matrices is a unitary matrix, the inverse of a unitary
matrix is another unitary matrix, and the identity matrix is unitary, the set of .n ×
n unitary matrices forms a group. By taking the continuous map .f : Mn(C) →
Hn(C), U �→ U†U , from the space of .n × n matrices with complex entries to its
Hermitian subspace, one may show that .{I } is a regular value of f . Hence, the
unitary group U.(n,C), as a preimage of .{I }, is a real sub-manifold of .Mn(C) of
dimension .N = dim Mn(C) − dim Hn(C). As the space of .n × n matrices with
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complex entries has real dimension .2n2, and the space of .n × n Hermitian matrices
has real dimension .n2, the unitary group U.(n,C) is a Lie group of dimension .n2.

It is understood that a Lie group is a group which has a smooth manifold
structure. In order to study the Lie group in more details, we turn our attention
to the concept of a Lie algebra and their associated structures. Historically, the Lie
algebra was introduced by the Norwegian mathematician Marius Sophus Lie in the
1870s to study the infinitesimal generators of the continuous transformation groups,
in which the original group structure is encoded in the commutator bracket.

Being a vector space rather than a manifold, Lie algebra is a simpler object than
Lie group: the former one has a linear structure, which admits a global coordinate
chart, while the latter cannot be covered by a single coordinate chart, and does
not admit a linear structure. Nevertheless, as the Lie algebra still encodes the
infinitesimal structure of a Lie group, one may reconstruct the Lie group at the local
level by using the exponential map and the Baker-Campbell-Hausdorff formula. As
such, the local structure of a Lie group is completely described by its Lie algebra.

To be more precise, a Lie algebra .g is the tangent space of a Lie group G at the
identity, which includes an operation .[, ] : g × g → g : (X, Y ) �→ [X, Y ], called
the Lie bracket, an alternating bilinear map which satisfies the Jacobi identity. In
other words, the Lie bracket obeys the following conditions:

.[λ1X1 + λ2X2, Y ] = λ1[X1, Y ] + λ2[X2, Y ], . (A.9a)

[X, Y ] = −[Y,X], . (A.9b)

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0, (A.9c)

for arbitrary .X, Y,Z,X1, X2 ∈ g and .λ1, λ2 ∈ C.
As a first example of Lie algebra, one may consider the tangent space of the

orthogonal group SO.(3,R) at the identity element, denoted as .so(3,R), which is a
vector space spanned by the basis

.Lx =
⎛
⎝0 0 0

0 0 −1
0 1 0

⎞
⎠ , Ly =

⎛
⎝ 0 0 1

0 0 0
−1 0 0

⎞
⎠ , Lz =

⎛
⎝0 −1 0

1 0 0
0 0 0

⎞
⎠ . (A.10)

Then, .so(3,R) forms a Lie algebra, where the Lie bracket of arbitrary two elements
.X, Y ∈ so(3,R) is given by the commutator .[X, Y ] ≡ XY−YX. The commutation
relations of the basis elements are

.[Lx,Ly] = Lz, [Lz,Lx] = Ly, [Ly,Lz] = Lx. (A.11)
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As arbitrary two elements .X, Y ∈ so(3,R) can be written as

.X =
⎛
⎝ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎞
⎠ , Y =

⎛
⎝ 0 −y3 y2

y3 0 −y1

−y2 y1 0

⎞
⎠ , (A.12)

a direction computation yields

.[X, Y ] = (x2y3 − x3y2)Lx + (x3y1 − x1y3)Ly + (x1y2 − x2y1)Lz. (A.13)

It shows that the Lie bracket of .so(3,R) corresponds to the cross product in .R
3.

In other words, the Lie algebra .so(3,R) along with the matrix commutator is
isomorphic to the Lie algebra .R

3 along with the cross product.
As another example, one may consider the general linear Lie algebra .gl(n,R)

of the general linear group GL.(n,R). As the general linear group GL.(n,R) is an
open sub-manifold of the space of .n × n matrices .Mn(R), one may identify the
tangent space of GL.(n,R) at any invertible matrix A with the tangent space of
.Mn(R) at the matrix A. Moreover, since .Mn(R) is isomorphic to the Euclidean space
.R

n2
, one may identify .Mn(R) with its tangent space at the matrix A. In particular,

one may identify .Mn(R) with the tangent space of GL.(n,R) at the identity matrix
I and thus with the Lie algebra .gl(n,R) of GL.(n,R): .gl(n,R) ∼= Mn(R).

In general, let .g be a Lie algebra in dimension n, and let .X1, · · · , Xn be a basis
of .g. One may assume that

.[Xi,Xj ] =
n∑

k=1

ck
ijXk, 1 ≤ i, j ≤ n, (A.14)

where .ck
ij (i, j, k = 1, 2, · · · , n) are called the structure constants of the Lie

algebra .g. Then the Lie bracket between two arbitrary elements in .g, e.g., .X =∑n
i=1 λiXi and .Y = ∑n

j=1 μjXj , is completely determined by the structure
constants as

.[X, Y ] =
n∑

i,j,k=1

λiμj c
k
ijXk, 1 ≤ i, j ≤ n. (A.15)

It is not difficult to verify that the structure constants of a Lie algebra satisfy the
following relations:

.ck
ij = −ck

ji , 1 ≤ i, j, k ≤ n, . (A.16a)

n∑
s=1

(cs
ij c

l
sk + cs

jkc
l
si + cs

kic
l
sj ) = 0 (A.16b)



A Introduction of Lie Group 337

for .1 ≤ i, j, k, l ≤ n. As an example, the structure constants of the Lie algebra
.so(3,R) are given by .ck

ij = εijk , where .εijk is the Levi-Civita symbol in three
dimensions defined by .εijk = 1, if .(i, j, k) is an even permutation of .(x, y, z);
.εijk = −1, if .(i, j, k) is an odd permutation of .(x, y, z), and .εijk = 0 for other
cases.

A.2 Special Orthogonal Group: SO(N)

The special orthogonal group, denoted as SO.(N), is the group of rotations in a
Euclidean space of dimension N , which is formed by all .N × N special orthogonal
matrices. A square matrix R is a special orthogonal matrix if .RRT = RTR = I ,
where I is the identity matrix and its determinant satisfies .det R = I . Near the
identity, the first condition is solved by writing .R ≈ I + M and requiring .M =
−MT, i.e., M is a skew-symmetric matrix. Hence, the SO.(N) group has .

1
2 (N2 −N)

generators .Mab which satisfy .Mab = −Mba . For physicists, as the generators are
required to be Hermitian, i.e., .M† = M , a convenient choice would be

.(Mab)kl = −i(δakδbl − δalδbk). (A.17)

To compute the Lie algebra for SO.(N), one may take SO.(4) as an inspiring example.
For those generators whose index sets have no integer in common, e.g., .M12 and
.M34, the commutator vanishes, i.e., .[M12,M34] = 0. For those generators whose
index sets have one integer in common, e.g., .M23 and .M31, a direct computation
yields .[M23,M31] ≡ [Mx,My] = iMz = iM12, where we have used the fact
that .M12, .M23, and .M31 form a SO.(3) subgroup of SO.(4). It implies that when
the indices b and c are equal, the commutator .[Mab,Mcd ] equals .iMda . Hence,
taking into account the fact that the generators .Mab are skew-symmetric, and the
commutator vanishes identically when the index sets for the generators have two
integers in common, one immediately obtains the Lie algebra for SO.(N)

.[Mab,Mcd ] = −i(δbcMad + δadMbc − δacMbd − δbdMac). (A.18)

In order to find the root vectors of SO.(N), one may start with the first nontrivial
case of SO.(4) beyond the almost trivial case of SO.(3). Of the six generators of
SO.(4), .M12 and .M34 form a maximal subset of mutually commuting generators.
Hence, one may diagonalize it simultaneously and denote them by .H1 and .H2 in the
new basis, respectively:

.H1 = diag(1,−1, 0, 0), . (A.19a)

H2 = diag(0, 0, 1,−1). (A.19b)

As the rank of SO.(4) is .r = 2, all the weights and roots are two-dimensional vectors.
One can directly read off the four weights of the defining representation from the
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entries of .H1 and .H2, scanning Eq. (A.19) vertically

.w1 = (1, 0),w2 = (−1, 0),w3 = (0, 1),w4 = (0,−1). (A.20)

Hence, the four root vectors which connect the weights are given by

.α1 ≡ w1 − w4 = (1, 1), . (A.21a)

α2 ≡ w1 − w3 = (1,−1), . (A.21b)

α3 ≡ w4 − w1 = (−1,−1), . (A.21c)

α4 ≡ w3 − w1 = (−1, 1). (A.21d)

If one denotes the basis vectors of a two-dimensional Euclidean space as .e1 and .e2,
then the four roots of SO.(4) can be expressed as

. ± e1 ± e2. (A.22)

One may choose .α1 and .α2 as positive roots, which can be expressed as

.e1 ± e2, (A.23)

where both of them are simple roots.
Before we directly jump onto SO.(2r), it is helpful to discuss two more examples

in low dimensions, for which new features emerge. For SO.(6), the maximal
subgroup of mutually commuting generators consists of the following three traceless
matrices:

.H1 = diag(1,−1, 0, 0, 0, 0), . (A.24a)

H2 = diag(0, 0, 1,−1, 0, 0), . (A.24b)

H3 = diag(0, 0, 0, 0, 1,−1). (A.24c)

As the rank of SO.(6) is .r = 3, all the weights and roots are three-dimensional
vectors. One can directly read off the six weights of the defining representation by
scanning Eq. (A.24) vertically

.w1 = (1, 0, 0),w2 = (−1, 0, 0),w3 = (0, 1, 0), . (A.25a)

w4 = (0,−1, 0),w5 = (0, 0, 1),w6 = (0, 0,−1). (A.25b)

The 12 roots of SO.(6) are then given by

. ± e1 ± e2,±e1 ± e3,±e2 ± e3. (A.26)
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One may choose the six positive roots to be

.e1 ± e2, e1 ± e3, e2 ± e3. (A.27)

A convenient choice of the simple roots would be

.α1 ≡ e1 − e2,α2 ≡ e2 − e3,α3 ≡ e2 + e3. (A.28)

Hence, the remaining positive roots in terms of the simple roots are

.α1 + α2,α1 + α3,α1 + α2 + α3, (A.29)

For SO.(8), the maximal subgroup of mutually commuting generators consists of
the following four traceless matrices:

.H1 = diag(1,−1, 0, 0, 0, 0, 0, 0), . (A.30a)

H2 = diag(0, 0, 1,−1, 0, 0, 0, 0), . (A.30b)

H3 = diag(0, 0, 0, 0, 1,−1, 0, 0), . (A.30c)

H4 = diag(0, 0, 0, 0, 0, 0, 1,−1). (A.30d)

As the rank of SO.(8) is .r = 4, all the weights and roots are four-dimensional
vectors. One can directly read off the eight weights of the defining representation
by scanning Eq. (A.30) vertically

.w1 = (1, 0, 0, 0),w2 = (−1, 0, 0, 0),w3 = (0, 1, 0, 0), . (A.31a)

w4 = (0,−1, 0, 0),w5 = (0, 0, 1, 0),w6 = (0, 0,−1, 0), . (A.31b)

w7 = (0, 0, 0, 1),w8 = (0, 0, 0,−1). (A.31c)

The 24 roots of SO.(8) which connect the weights are then given by

. ± e1 ± e2,±e1 ± e3,±e1 ± e4,±e2 ± e3,±e2 ± e4,±e3 ± e4. (A.32)

One may choose the 12 positive roots of SO.(8) to be

.e1 ± e2, e1 ± e3, e1 ± e4, e2 ± e3, e2 ± e4, e3 ± e4. (A.33)

Among them, a convenient choice of the four simple roots is

.α1 ≡ e1 − e2,α2 ≡ e2 − e3,α3 ≡ e3 − e4,α4 ≡ e3 + e4. (A.34)
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Hence, the remaining eight positive roots in terms of the simple roots are

.α1 + α2,α2 + α3,α2 + α4, . (A.35a)

α1 + α2 + α3,α1 + α2 + α4,α2 + α3 + α4, . (A.35b)

α1 + α2 + α3 + α4,α1 + 2α2 + α3 + α4. (A.35c)

In general, for SO.(2r), the maximal subgroup of mutually commuting generators
are

.H1 = diag(1,−1, 0, 0, · · · , 0, 0), (A.36)

H2 = diag(0, 0, 1,−1, · · · , 0, 0),

...

Hr = diag(0, 0, 0, 0, 0, 0, 1,−1).

from which one can read off the 2r weights for the defining representation

.w1 = (1, 0, · · · , 0), (A.37)

w2 = (−1, 0, · · · , 0),

...

w2r−1 = (0, 0, · · · , 1),

w2r = (0, 0, · · · ,−1).

Exercises

A.1. Prove that every 2 × 2 unitary matrix U with determinant 1 can be written in
the form

.U =
(

eiφ1 cos θ −eiφ2 sin θ

e−iφ2 sin θ e−iφ1 cos θ

)

=
(

ei� 0
0 e−i�

) (
cos θ − sin θ

sin θ cos θ

)(
ei� 0
0 e−i�

)
,

where φ1 ≡ � + � and φ2 ≡ � − �.

A.2. Verify that the set O(n,C) under matrix multiplication forms a group.
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A.3. Prove that the orthogonal group O(n,R) is compact. (Hint: Prove that O(n,R)

is both closed and bounded. Then, use the Heine-Borel theorem to prove that
O(n,R) is compact.)

A.4. Verify that the real dimension of the space of n × n Hermitian matrices is n2.
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